论文标题
su(n)分数instantons
SU(N) fractional Instantons
论文作者
论文摘要
我们介绍了对$ su(n)$ yang-mills运动方程的一组解决方案的研究。通过在尺寸$ l^2 \ times(nl)^2 $的带有扭曲边界条件的圆环上使用梯度流动技术最小化操作,从而获得了数值获得配置。我们特别注意大型$ n $限制,这是按照非常特殊的顺序进行的,颜色$ n $和磁通量$ m $分别为fibonacci序列的$ n $ th和$ n-2 $术语。我们讨论了解决方案的较大$ n $缩放,并将几个规格的数量分析为Polyakov循环。我们还讨论了所谓的汉密尔顿限制,其中一个大方向发送到了无限,这些方向代表了不相等的纯仪表配置之间的隧道事件。
We present our study of a set of solutions to the $SU(N)$ Yang-Mills equations of motion with fractional topological charge. The configurations are obtained numerically by minimizing the action with gradient flow techniques on a torus of size $l^2\times(Nl)^2$ with twisted boundary conditions. We pay special attention to the large $N$ limit, which is taken along a very peculiar sequence, with the number of colors $N$ and the magnetic flux $m$ selected respectively as the $n$-th and $n-2$ terms of the Fibonacci sequence. We discuss the large $N$ scaling of the solutions and analyze several gauge invariant quantities as the Polyakov loops. We also discuss the so-called Hamiltonian limit, with one of the large directions sent to infinity, where these instantons represent tunneling events between inequivalent pure gauge configurations.