论文标题

二维拓扑拓扑拓扑和超对称性拓扑绝缘子

Second-order topology and supersymmetry in two-dimensional topological insulators

论文作者

Weber, Clara S., Pletyukhov, Mikhail, Hou, Zhe, Kennes, Dante M., Klinovaja, Jelena, Loss, Daniel, Schoeller, Herbert

论文摘要

我们阐明了超对称性与宽类二维二阶绝缘子(SOTI)之间的基本联系。通过应用系统中的一个孔,通过应用半成位的Aharonov-bohm Flux $ f =φ/φ_0= 1/2 $来诱导这种特殊的超对称性。在这里,三个对称性对于建立此基本链接至关重要:手性对称性,反转对称性和镜像对称性。在这样的半刻录值的磁通下,镜像对称性反式抗对称的对称性,导致非平凡的$ n = 1 $ susy表示在每个手性部门中的Hamiltonian的绝对值。这意味着即使在有限的系统尺寸下,也发现了所有具有非零能量的特征性的唯一零能状态和所有具有非零能量的特征性的双重变性。对于任意平滑表面,可以在一个有效的表面汉密尔顿(Hamiltonian)中描述2D-SOTI和SUSY之间的联系,该链接涵盖了整个超对称周期性的WITTEN模型。将此一般链接应用于带有平面Zeeman领域的Bernevig-Hughes-Zhang(BHz)模型的原型示例,我们分析了整个相位图,并确定了将拓扑与非居民间隙相位的无间隙WEYL相。令人惊讶的是,我们发现位于外表面的拓扑状态保留在Weyl相中,而拓扑孔状态在接近Weyl相后移动到外表面并改变其空间对称性。因此,拓扑孔状态可以用多功能的方式调整,以打开通向多孔系统中磁场诱导的拓扑工程的途径。最后,我们证明了局部状态抵抗半插入通量的偏差,通量渗透到样品中,表面扭曲和随机杂质,以达到杂质强度,直至表面间隙的顺序。

We unravel a fundamental connection between supersymmetry and a wide class of two dimensional second-order topological insulators (SOTI). This particular supersymmetry is induced by applying a half-integer Aharonov-Bohm flux $f=Φ/Φ_0=1/2$ through a hole in the system. Here, three symmetries are essential to establish this fundamental link: chiral symmetry, inversion symmetry, and mirror symmetry. At such a flux of half-integer value the mirror symmetry anticommutes with the inversion symmetry leading to a nontrivial $n=1$-SUSY representation for the absolute value of the Hamiltonian in each chiral sector, separately. This implies that a unique zero-energy state and an exact twofold degeneracy of all eigenstates with non-zero energy is found even at finite system size. For arbitrary smooth surfaces the link between 2D-SOTI and SUSY can be described within a universal low-energy theory in terms of an effective surface Hamiltonian which encompasses the whole class of supersymmetric periodic Witten models. Applying this general link to the prototypical example of a Bernevig-Hughes-Zhang(BHZ)-model with an in-plane Zeeman field, we analyze the entire phase diagram and identify a gapless Weyl phase separating the topological from the non-topological gapped phase. Surprisingly, we find that topological states localized at the outer surface remain in the Weyl phase, whereas topological hole states move to the outer surface and change their spatial symmetry upon approaching the Weyl phase. Therefore, the topological hole states can be tuned in a versatile manner opening up a route towards magnetic-field-induced topological engineering in multi-hole systems. Finally, we demonstrate the stability of localized states against deviation from half-integer flux, flux penetration into the sample, surface distortions, and random impurities for impurity strengths up to the order of the surface gap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源