论文标题

快速检测到延迟敏感性的应用程序的爆发干扰应用程序

Fast Detection of Burst Jamming for Delay-Sensitive Internet-of-Things Applications

论文作者

Wang, Shao-Di, Wang, Hui-Ming, Liu, Peng

论文摘要

在本文中,我们调查了用于延迟敏感的图像(IoT)应用程序的爆发干扰检测方法的设计。为了及时地检测爆发干扰,我们提出了一个在线本金方向异常检测(OPDAD)方法。我们考虑了单圈散点通道模型,其中配备了大量天线的基站在高海拔处升高。在这种情况下,由于合法的物联网发射器或干扰器的角度扩散受到狭窄区域的限制,因此信号空间的主要方向在堵塞攻击和正常状态之间存在明显的差异。与现有的基于统计功能的批处理方法不同,提出的OPDAD方法采用在线迭代处理模式,该模式可以通过分析新来的信号来快速检测确切的攻击时间块实例。此外,我们的检测方法不依赖攻击者的先验知识,因为它仅关心信号空间主要方向的突然变化。此外,基于高空间分辨率和狭窄的角度扩散,我们提供了收敛速率估计值,并得出了针对拟议的OPDAD方法结合的几乎最佳有限样品误差。数值结果表明我们提出的方法的实时能力和检测性能出色。

In this paper, we investigate the design of a burst jamming detection method for delay-sensitive Internet-of-Things (IoT) applications. In order to obtain a timely detection of burst jamming, we propose an online principal direction anomaly detection (OPDAD) method. We consider the one-ring scatter channel model, where the base station equipped with a large number of antennas is elevated at a high altitude. In this case, since the angular spread of the legitimate IoT transmitter or the jammer is restricted within a narrow region, there is a distinct difference of the principal direction of the signal space between the jamming attack and the normal state. Unlike existing statistical features based batching methods, the proposed OPDAD method adopts an online iterative processing mode, which can quickly detect the exact attack time block instance by analyzing the newly coming signal. In addition, our detection method does not rely on the prior knowledge of the attacker, because it only cares the abrupt change in the principal direction of the signal space. Moreover, based on the high spatial resolution and the narrow angular spread, we provide the convergence rate estimate and derive a nearly optimal finite sample error bound for the proposed OPDAD method. Numerical results show the excellent real time capability and detection performance of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源