论文标题

在球形测量网格上辐射传输方程的角度离散的有限元方法

A Finite Element Method for Angular Discretization of the Radiation Transport Equation on Spherical Geodesic Grids

论文作者

Bhattacharyya, Maitraya K, Radice, David

论文摘要

事实证明,基于离散的纵坐标($ s_n $)和基于过滤的球形谐波($ fp_n $)方案在解决Boltzmann传输方程方面是强大而准确的,但是在不同的物理场景中它们具有自己的优势和劣势。我们提出了一种基于有限元方法的新方法,以结合方法的优势并减轻其缺点。角变量是在球形地球网格上指定的,其函数在球体上使用有限元表示。采用具有积极性的限制策略来防止非物理值出现在解决方案中。然后将所得的方法与$ s_n $和$ fp_n $方案都使用四个测试问题进行比较,并且在其他方​​法之一失败时被发现表现良好。

Discrete ordinate ($S_N$) and filtered spherical harmonics ($FP_N$) based schemes have been proven to be robust and accurate in solving the Boltzmann transport equation but they have their own strengths and weaknesses in different physical scenarios. We present a new method based on a finite element approach in angle that combines the strengths of both methods and mitigates their disadvantages. The angular variables are specified on a spherical geodesic grid with functions on the sphere being represented using a finite element basis. A positivity-preserving limiting strategy is employed to prevent non-physical values from appearing in the solutions. The resulting method is then compared with both $S_N$ and $FP_N$ schemes using four test problems and is found to perform well when one of the other methods fail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源