论文标题

SmartQuery:通过降低混合不确定性的图形神经网络的主动学习框架

SMARTQUERY: An Active Learning Framework for Graph Neural Networks through Hybrid Uncertainty Reduction

论文作者

Li, Xiaoting, Wu, Yuhang, Rakesh, Vineeth, Lin, Yusan, Yang, Hao, Wang, Fei

论文摘要

图神经网络在表示学习方面取得了重大成功。但是,性能取得的成就是有代价的。获取综合标记的培训数据可能非常昂贵。主动学习通过搜索未开发的数据空间并优先选择数据以最大化模型的性能增益来减轻此问题。在本文中,我们提出了一种新颖的方法智能广播,这是一个学习图形神经网络的框架,该框架很少使用混合不确定性降低功能标记的节点。这是使用两个关键步骤来实现的:(a)通过利用多样化的显式图信息和(b)引入标签传播来有效利用已知标签以评估隐式嵌入信息,从而设计一个多阶段的活动图学习框架。使用三个网络数据集上的一组全面的实验,我们在很少的标记数据(每类最多5个标记的节点)上证明了方法对最先进的方法的竞争性能。

Graph neural networks have achieved significant success in representation learning. However, the performance gains come at a cost; acquiring comprehensive labeled data for training can be prohibitively expensive. Active learning mitigates this issue by searching the unexplored data space and prioritizing the selection of data to maximize model's performance gain. In this paper, we propose a novel method SMARTQUERY, a framework to learn a graph neural network with very few labeled nodes using a hybrid uncertainty reduction function. This is achieved using two key steps: (a) design a multi-stage active graph learning framework by exploiting diverse explicit graph information and (b) introduce label propagation to efficiently exploit known labels to assess the implicit embedding information. Using a comprehensive set of experiments on three network datasets, we demonstrate the competitive performance of our method against state-of-the-arts on very few labeled data (up to 5 labeled nodes per class).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源