论文标题
通过时间混合时间序列的对比域适应
Contrastive Domain Adaptation for Time-Series via Temporal Mixup
论文作者
论文摘要
无监督的域适应(UDA)已通过将知识从标记的源域转移到移动的未标记的目标域,作为域移动问题的强大解决方案。尽管UDA对于视觉应用的普遍存在,但对于时间序列应用程序,它仍然相对较少。在这项工作中,我们提出了一个新型的轻质对比域适应框架,称为COTMIX,用于时间序列数据。与使用统计距离或对抗技术的现有方法不同,我们仅利用对比度学习来减轻各个领域的分布变化。具体而言,我们提出了一种新型的时间混合策略,以为源和目标域生成两个中间的增强视图。随后,我们利用对比度学习,以最大程度地提高每个域与其相应的增强视图之间的相似性。生成的视图在适应过程中考虑了时间序列数据的时间动态,同时在两个域之间继承了语义。因此,我们逐渐将两个领域推向一个共同的中间空间,从而减轻它们之间的分布转移。在五个现实世界中的时间序列数据集上进行的广泛实验表明,我们的方法可以大大优于所有最新的UDA方法。 COTMIX的实现代码可在\ href {https://github.com/emadeldeen24/cotmix} {github.com/emadeldeen24/cotmix}中获得。
Unsupervised Domain Adaptation (UDA) has emerged as a powerful solution for the domain shift problem via transferring the knowledge from a labeled source domain to a shifted unlabeled target domain. Despite the prevalence of UDA for visual applications, it remains relatively less explored for time-series applications. In this work, we propose a novel lightweight contrastive domain adaptation framework called CoTMix for time-series data. Unlike existing approaches that either use statistical distances or adversarial techniques, we leverage contrastive learning solely to mitigate the distribution shift across the different domains. Specifically, we propose a novel temporal mixup strategy to generate two intermediate augmented views for the source and target domains. Subsequently, we leverage contrastive learning to maximize the similarity between each domain and its corresponding augmented view. The generated views consider the temporal dynamics of time-series data during the adaptation process while inheriting the semantics among the two domains. Hence, we gradually push both domains towards a common intermediate space, mitigating the distribution shift across them. Extensive experiments conducted on five real-world time-series datasets show that our approach can significantly outperform all state-of-the-art UDA methods. The implementation code of CoTMix is available at \href{https://github.com/emadeldeen24/CoTMix}{github.com/emadeldeen24/CoTMix}.