论文标题
脑肿瘤合成数据生成具有自适应样式
Brain Tumor Synthetic Data Generation with Adaptive StyleGANs
论文作者
论文摘要
多年来,生成模型一直非常成功,并引起了合成数据生成的极大关注。随着深度学习模型变得越来越复杂,它们需要大量数据才能准确执行。在医学图像分析中,这种生成模型起着至关重要的作用,因为由于数据隐私,数据多样性缺乏或不均匀的数据分布,可用数据受到限制。在本文中,我们提出了一种使用生成对抗网络生成脑肿瘤MRI图像的方法。与现有方法相比,我们已经利用了具有ADA方法的stylegan2,用ADA方法学来产生具有肿瘤的高质量脑MRI,同时使用较小的训练数据。我们使用三种预训练的模型进行转移学习。结果表明,所提出的方法可以学习脑肿瘤的分布。此外,该模型可以通过肿瘤产生高质量的合成脑MRI MRI,该肿瘤可能会限制小样本量问题。该方法可以通过用肿瘤产生现实的大脑MRI来解决有限的数据可用性。该代码可在:〜\ url {https://github.com/rizwanqureshi123/brain-tumor-synthetic-data}中获得。
Generative models have been very successful over the years and have received significant attention for synthetic data generation. As deep learning models are getting more and more complex, they require large amounts of data to perform accurately. In medical image analysis, such generative models play a crucial role as the available data is limited due to challenges related to data privacy, lack of data diversity, or uneven data distributions. In this paper, we present a method to generate brain tumor MRI images using generative adversarial networks. We have utilized StyleGAN2 with ADA methodology to generate high-quality brain MRI with tumors while using a significantly smaller amount of training data when compared to the existing approaches. We use three pre-trained models for transfer learning. Results demonstrate that the proposed method can learn the distributions of brain tumors. Furthermore, the model can generate high-quality synthetic brain MRI with a tumor that can limit the small sample size issues. The approach can addresses the limited data availability by generating realistic-looking brain MRI with tumors. The code is available at: ~\url{https://github.com/rizwanqureshi123/Brain-Tumor-Synthetic-Data}.