论文标题

等级政策融合作为最佳运输

Hierarchical Policy Blending As Optimal Transport

论文作者

Le, An T., Hansel, Kay, Peters, Jan, Chalvatzaki, Georgia

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present hierarchical policy blending as optimal transport (HiPBOT). HiPBOT hierarchically adjusts the weights of low-level reactive expert policies of different agents by adding a look-ahead planning layer on the parameter space. The high-level planner renders policy blending as unbalanced optimal transport consolidating the scaling of the underlying Riemannian motion policies. As a result, HiPBOT effectively decides the priorities between expert policies and agents, ensuring the task's success and guaranteeing safety. Experimental results in several application scenarios, from low-dimensional navigation to high-dimensional whole-body control, show the efficacy and efficiency of HiPBOT. Our method outperforms state-of-the-art baselines -- either adopting probabilistic inference or defining a tree structure of experts -- paving the way for new applications of optimal transport to robot control. More material at https://sites.google.com/view/hipobot

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源