论文标题
使用卷积神经网络识别离散的呼吸器
Identifying Discrete Breathers Using Convolutional Neural Networks
论文作者
论文摘要
以深度学习形式的人工智能现在非常受欢迎,并且在许多科学技术领域都直接实施。在目前的工作中,我们使用卷积神经网络的框架研究了一维非线性链中离散呼吸器的时间演变。我们专注于区分离散的呼吸器,这些呼吸器与线性化声子模式局部的非线性模式。呼吸器位于非线性离散晶格的空间和时间周期溶液中,而声子是相互作用原子和分子的线性集体振荡。我们表明,深度学习神经网络确实能够不仅能够将呼吸器与声子模式区分开,而且还可以高精度地确定产生呼吸器的潜在非线性现场电位。这项工作可以扩展到更复杂的天然系统。
Artificial intelligence in the form of deep learning is now very popular and directly implemented in many areas of science and technology. In the present work we study time evolution of Discrete Breathers in one-dimensional nonlinear chains using the framework of Convolutional Neural Networks. We focus on differentiating discrete breathers which are localized nonlinear modes from linearized phonon modes. The breathers are localized in space and time-periodic solutions of non-linear discrete lattices while phonons are the linear collective oscillations of interacting atoms and molecules. We show that deep learning neural networks are indeed able not only to distinguish breather from phonon modes but also determine with high accuracy the underlying nonlinear on-site potentials that generate breathers. This work can have extensions to more complex natural systems.