论文标题
相关观察误差对变异数据同化的共轭梯度算法收敛的影响
Impact of correlated observation errors on the convergence of the conjugate gradient algorithm in variational data assimilation
论文作者
论文摘要
一类重要的非线性加权最小二乘问题是由大气和海洋模型中观察结果的同化引起的。在各种数据同化中,逆误差协方差矩阵定义了最小二乘问题的加权矩阵。对于观察误差,即使怀疑观察误差相关,通常也会假定对角矩阵(即,不相关的误差)。虽然对观察者相关性的考虑应提高溶液的质量,但它也会影响用于迭代溶液的最小化算法的收敛速率。如果在达到完全收敛之前停止了最小化过程,这通常是在操作应用中的情况,即使正确解释了观察错误相关性,该解决方案也可能会降解。在本文中,我们探讨了观察 - 错误相关矩阵(R)对应用于一维变分数据同化(1d-var)问题的预处理共轭梯度(PCG)算法的收敛速率的影响。我们设计理想化的1D-VAR系统,包括更复杂的系统中使用的两个关键功能:我们将背景错误协方差矩阵(B)用作预处理器(B-PCG);我们使用扩散算子对B和R中的空间相关性进行建模。分析和数值结果的1D-VAR系统显示B-PCG收敛速率对基于扩散的相关模型的参数的敏感性很强。根据参数选择,相关的观察误差可以加快或减慢收敛速度。实际上,在一方面保持接近最佳可用估计和确保另一方面最小化算法的适当收敛速率之间,B和R的参数规格可能需要妥协。
An important class of nonlinear weighted least-squares problems arises from the assimilation of observations in atmospheric and ocean models. In variational data assimilation, inverse error covariance matrices define the weighting matrices of the least-squares problem. For observation errors, a diagonal matrix (i.e., uncorrelated errors) is often assumed for simplicity even when observation errors are suspected to be correlated. While accounting for observationerror correlations should improve the quality of the solution, it also affects the convergence rate of the minimization algorithms used to iterate to the solution. If the minimization process is stopped before reaching full convergence, which is usually the case in operational applications, the solution may be degraded even if the observation-error correlations are correctly accounted for. In this article, we explore the influence of the observation-error correlation matrix (R) on the convergence rate of a preconditioned conjugate gradient (PCG) algorithm applied to a one-dimensional variational data assimilation (1D-Var) problem. We design the idealised 1D-Var system to include two key features used in more complex systems: we use the background error covariance matrix (B) as a preconditioner (B-PCG); and we use a diffusion operator to model spatial correlations in B and R. Analytical and numerical results with the 1D-Var system show a strong sensitivity of the convergence rate of B-PCG to the parameters of the diffusion-based correlation models. Depending on the parameter choices, correlated observation errors can either speed up or slow down the convergence. In practice, a compromise may be required in the parameter specifications of B and R between staying close to the best available estimates on the one hand and ensuring an adequate convergence rate of the minimization algorithm on the other.