论文标题
Accu-HELP:基于机器学习的智能医疗框架,可准确检测强迫症
Accu-Help: A Machine Learning based Smart Healthcare Framework for Accurate Detection of Obsessive Compulsive Disorder
论文作者
论文摘要
近年来,智能医疗保健的重要性不能被夸大。当前的工作旨在扩大智能医疗保健的最新前提,以整合强迫症的强迫症(OCD)解决方案。使用机器学习从氧化应激生物标志物(OSB)鉴定OCD是OCD研究中的重要发展。但是,此过程涉及从医院收集的OCD类标签,从生化实验室收集相应的OSB,集成和标记的数据集创建,使用合适的机器学习算法用于设计OCD预测模型,并使这些预测模型可用于用于无网式OCD的不同生物化学实验室,用于无标记的OCD。此外,不时具有带有标记样品的数据集体积的显着增长,需要重新设计预测模型才能进一步使用。整个过程需要使用合适的机器学习算法的分布式数据收集,数据集成,医院和生化实验室之间的协调性OCD预测模式设计,并使机器学习模型可用于生化实验室。提出了所有这些事情,Accu-Help提出了完全自动化,智能和准确的OCD检测概念模型,以帮助生化实验室有效地检测OSB的OCD。 OSB分为三类:健康个体(HI),OCD影响个体(OAI)和受遗传影响的个体(GAI)。该提出的框架的主要组成部分是机器学习OCD预测模型设计。在此ACCU-HELP中,基于神经网络的方法的OCD预测准确性为86%。
In recent years the importance of Smart Healthcare cannot be overstated. The current work proposed to expand the state-of-art of smart healthcare in integrating solutions for Obsessive Compulsive Disorder (OCD). Identification of OCD from oxidative stress biomarkers (OSBs) using machine learning is an important development in the study of OCD. However, this process involves the collection of OCD class labels from hospitals, collection of corresponding OSBs from biochemical laboratories, integrated and labeled dataset creation, use of suitable machine learning algorithm for designing OCD prediction model, and making these prediction models available for different biochemical laboratories for OCD prediction for unlabeled OSBs. Further, from time to time, with significant growth in the volume of the dataset with labeled samples, redesigning the prediction model is required for further use. The whole process requires distributed data collection, data integration, coordination between the hospital and biochemical laboratory, dynamic machine learning OCD prediction mode design using a suitable machine learning algorithm, and making the machine learning model available for the biochemical laboratories. Keeping all these things in mind, Accu-Help a fully automated, smart, and accurate OCD detection conceptual model is proposed to help the biochemical laboratories for efficient detection of OCD from OSBs. OSBs are classified into three classes: Healthy Individual (HI), OCD Affected Individual (OAI), and Genetically Affected Individual (GAI). The main component of this proposed framework is the machine learning OCD prediction model design. In this Accu-Help, a neural network-based approach is presented with an OCD prediction accuracy of 86 percent.