论文标题
网络和时间依赖性的自适应顺序监视
Adaptive Sequential Surveillance with Network and Temporal Dependence
论文作者
论文摘要
战略测试分配在控制新兴和现有大流行(例如Covid-19,HIV)中起着重要作用。广泛的测试通过(1)通过识别案例减少传播以及(2)跟踪爆发动态以告知有针对性的干预措施来支持有效的流行病控制。但是,传染病监测提出了独特的统计挑战。例如,感兴趣的真正结果 - 一个人的积极传染状态,通常是潜在变量。此外,网络和时间依赖的存在都将数据降低到单个观察结果。由于定期测试整个人群既不是有效的也不可行的,因此未考虑个人风险的情况下,建议测试的标准测试方法建议基于规则的测试策略(例如,基于症状的基于症状,基于症状,接触跟踪)。在这项工作中,我们研究了一个自适应顺序设计,该设计涉及n个个体在τ时间步长期间,这允许个人之间和跨时间之间的依赖性。我们的因果目标参数是一个时间步长之后将获得的平均潜在结果,如果从观察到的过去开始,我们就进行了随机干预,从而在资源约束下最大程度地提高了结果。我们建议在线超级学习者进行自适应顺序监视,该监视随着时间的流逝,可以学习测试策略的最佳选择,同时适应爆发的当前状态。依靠一系列的工作模型,提出的方法在时间或两者兼有:基于数据中的基础(未知)结构。我们在观察到的数据方面给出了潜在结果的鉴定结果,并证明了在COVID-19大流行期间建模居民大学环境的模拟策略的出色表现。
Strategic test allocation plays a major role in the control of both emerging and existing pandemics (e.g., COVID-19, HIV). Widespread testing supports effective epidemic control by (1) reducing transmission via identifying cases, and (2) tracking outbreak dynamics to inform targeted interventions. However, infectious disease surveillance presents unique statistical challenges. For instance, the true outcome of interest - one's positive infectious status, is often a latent variable. In addition, presence of both network and temporal dependence reduces the data to a single observation. As testing entire populations regularly is neither efficient nor feasible, standard approaches to testing recommend simple rule-based testing strategies (e.g., symptom based, contact tracing), without taking into account individual risk. In this work, we study an adaptive sequential design involving n individuals over a period of τ time-steps, which allows for unspecified dependence among individuals and across time. Our causal target parameter is the mean latent outcome we would have obtained after one time-step, if, starting at time t given the observed past, we had carried out a stochastic intervention that maximizes the outcome under a resource constraint. We propose an Online Super Learner for adaptive sequential surveillance that learns the optimal choice of tests strategies over time while adapting to the current state of the outbreak. Relying on a series of working models, the proposed method learns across samples, through time, or both: based on the underlying (unknown) structure in the data. We present an identification result for the latent outcome in terms of the observed data, and demonstrate the superior performance of the proposed strategy in a simulation modeling a residential university environment during the COVID-19 pandemic.