论文标题

量化的wasserstein procrustes单词嵌入空间的对齐

Quantized Wasserstein Procrustes Alignment of Word Embedding Spaces

论文作者

Aboagye, Prince O, Zheng, Yan, Yeh, Michael, Wang, Junpeng, Zhuang, Zhongfang, Chen, Huiyuan, Wang, Liang, Zhang, Wei, Phillips, Jeff

论文摘要

最佳传输(OT)提供了一个有用的几何框架,以估算无监督的跨语言嵌入(CLWE)模型下的排列矩阵,该模型将构成对齐任务作为Wasserstein-Prolocrustes问题。但是,线性编程算法和通过sindhorn近似OT求解器用于计算置换矩阵具有显着的计算负担,因为它们在输入大小上分别在立方体和四边形上进行缩放。这使得精确地计算出较大的输入尺寸的OT距离使其缓慢且不可行,从而导致置换矩阵的近似质量较差,随后获得了较不健壮的学习传输函数或映射器。本文提出了一个无监督的基于投影的Clwe模型,称为量化的wasserstein procrustes(QWP)。 QWP依赖于源和目标单语嵌入空间的量化步骤,以估算廉价采样程序的排列矩阵。在固定的计算成本下,这种方法显着提高了经验求解器的近似质量。我们证明QWP在双语词典诱导(BLI)任务上取得了最新的结果。

Optimal Transport (OT) provides a useful geometric framework to estimate the permutation matrix under unsupervised cross-lingual word embedding (CLWE) models that pose the alignment task as a Wasserstein-Procrustes problem. However, linear programming algorithms and approximate OT solvers via Sinkhorn for computing the permutation matrix come with a significant computational burden since they scale cubically and quadratically, respectively, in the input size. This makes it slow and infeasible to compute OT distances exactly for a larger input size, resulting in a poor approximation quality of the permutation matrix and subsequently a less robust learned transfer function or mapper. This paper proposes an unsupervised projection-based CLWE model called quantized Wasserstein Procrustes (qWP). qWP relies on a quantization step of both the source and target monolingual embedding space to estimate the permutation matrix given a cheap sampling procedure. This approach substantially improves the approximation quality of empirical OT solvers given fixed computational cost. We demonstrate that qWP achieves state-of-the-art results on the Bilingual lexicon Induction (BLI) task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源