论文标题

$ | v_ {ub}的提取|/| v_ {cb} | $从独家$ b \ to u(c)\ellν_ {\ ell} $ decays的组合研究中

Extractions of $|V_{ub}|/|V_{cb}|$ from a combined study of the exclusive $b\to u(c) \ellν_{\ell}$ decays

论文作者

Biswas, Aritra, Nandi, Soumitra, Ray, Ipsita

论文摘要

我们从$ \ bar {b} \ to(π,ρ,ρ,ω)\ ell^ - \barν_{\ barv _ {\ ell} $ {\ ell} $ and $ \ bar {b bar {b bar {b}(b bar {b}(\ bar}(\ b}(b bar {b bar}(\ bar {bbar {bar)),我们已经从对可用输入的组合研究中提取了比率$ | v_ {ub} |/| v_ {cb} | $ (d^{(\ ast)},d_s^{(\ ast)})\ ell^ - \barν_ {\ ell} $($ \ ell =μ$或$ e $)衰减。我们在分支分支$ \ Mathcal {br}(\ bar {b} _s \ to K^+μ^ - \barν_μ)$或费率$γ(\ bar {b} _s \ to k^+ k^+ el^el^ - \ ell^ - \ el^ - ^ - \ el^ - - γ(\ bar {b} _s \ to d_s^+ \ ell^ - \barν_ {\ ell})$。我们已经使用了不同$ q^2 $ bins的分支部分的所有可用实验数据,这是有关晶格和光锥总规则(LCSR)方法的形式的可用理论输入;在不同可能的情况下分析了数据并介绍了结果。从对所有$ b \ to c \ ell^ - \barν_ {\ ell} $独家衰减的组合分析中,我们获得了$ | v_ {cb} | =(40.5 \ pm 0.6)\ times 10^{ - 3} $ 3} $ $ | v_ {ub} | =(3.46 \ pm 0.12)\ times 10^{ - 3} $,它更改为$ | v_ {ub} | =(3.51 \ pm 0.13)\ times 10^{ - 3} $ dropping $ \ \ \ \ \ br}(br}(\ br}(\ bar bar barm barv)barv {b barm {b barm {b barm {因此,我们报告了比率$ | v_ {ub} |/| v_ {cb} |的值= 0.085 \ pm 0.003 $和$ 0.087 \ pm 0.003 $,带有和不带$ \ bar {b} _s \至k^+μ^ - \barν_μ$模式的输入。我们还预测了比率$γ(\ bar {b} _s \ to k^+ \ ell^ - \barν_ {\ ell})/γ(\ bar {b} _s \ to d_s^+ d_s^+ \ ell^ - \ ell^ - \ ell^ - \barν_ {\ ell})$。此外,我们还提供了$ \ Mathcal {br}(\ bar {b} _s \ to K^+μ^ - \barν_μ)$和$ \ Mathcal {br}(\ bar {b} \ to(ρ,ρ,ω) $ q^2 $ bins。

We have extracted the ratio $|V_{ub}|/|V_{cb}|$ from a combined study of the available inputs on $\bar{B}\to (π,ρ,ω)\ell^- \barν_{\ell}$ and $\bar{B}(\bar{B}_s)\to (D^{(\ast)}, D_s^{(\ast)})\ell^- \barν_{\ell}$ ($\ell = μ$ or $e$) decays. We have done our analysis with and without the inclusion of the available experimental results on the branching fraction $\mathcal{BR}(\bar{B}_s\to K^+μ^-\barν_μ)$ or the ratio of the rates $Γ(\bar{B}_s\to K^+ \ell^-\barν_{\ell})/ Γ(\bar{B}_s \to D_s^+ \ell^- \barν_{\ell})$. We have used all the available experimental data on the branching fractions in different $q^2$-bins, the available theory inputs on the form factors from lattice and the light cone sum rule (LCSR) approach; analysed the data in different possible scenarios and presented the results. From a combined analysis of all the $b\to c\ell^- \barν_{\ell}$ exclusive decays, we have obtained $|V_{cb}|=(40.5 \pm 0.6)\times 10^{-3}$ and from all the $b\to u\ell^- \barν_{\ell}$ modes, we obtain $|V_{ub}|=(3.46\pm 0.12)\times 10^{-3}$ which changes to $|V_{ub}|=(3.51 \pm 0.13)\times 10^{-3}$ after dropping $\mathcal{BR}(\bar{B}_s\to K^+μ^-\barν_μ)$. We hence report the values of the ratio $|V_{ub}|/|V_{cb}| = 0.085 \pm 0.003$ and $0.087 \pm 0.003$ with and without the input from $\bar{B}_s\to K^+μ^-\barν_μ$ modes, respectively. We have also predicted the ratio $Γ(\bar{B}_s\to K^+ \ell^-\barν_{\ell})/ Γ(\bar{B}_s \to D_s^+ \ell^- \barν_{\ell})$ using the fit results. In addition, we provide the predictions of $\mathcal{BR}(\bar{B}_s\to K^+μ^-\barν_μ)$ and $\mathcal{BR}(\bar{B}\to (ρ,ω)\ell^- \barν_{\ell})$ in the Standard Model (SM) in small $q^2$-bins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源