论文标题

带有深神经网络的无线电连续图中的天文源检测

Astronomical source detection in radio continuum maps with deep neural networks

论文作者

Riggi, S., Magro, D., Sortino, R., De Marco, A., Bordiu, C., Cecconello, T., Hopkins, A. M., Marvil, J., Umana, G., Sciacca, E., Vitello, F., Bufano, F., Ingallinera, A., Fiameni, G., Spampinato, C., Adami, K. Zarb

论文摘要

来源查找是即将进行的带有SKA前体的无线电连续体调查中最具挑战性的任务之一,例如澳大利亚SKA Pathfinder(Askap)望远镜的宇宙进化图(EMU)调查。这种调查的分辨率,敏感性和天空覆盖范围是前所未有的,需要在现有的源发现者中进行新功能和改进。其中,降低了错误的检测率,尤其是在银河平面中,以及将多个分离岛岛与物理物体相关联的能力。为了弥合这一差距,我们基于蒙版R-CNN对象检测框架开发了一个新的源查找器,该框架能够在无线电连续图像中检测和分类紧凑,扩展,虚假和成像的源。该模型是在早期科学和试点调查阶段观察到的,并使用VLA和ATCA望远镜拍摄的先前无线电调查数据对该模型进行了培训。在测试样本上,最终模型可实现超过85 \%的总体检测完整性,$ \ sim $ 65 \%的可靠性以及分类精度/召回90 \%的可靠性。报告并讨论了所有来源类别获得的结果。

Source finding is one of the most challenging tasks in upcoming radio continuum surveys with SKA precursors, such as the Evolutionary Map of the Universe (EMU) survey of the Australian SKA Pathfinder (ASKAP) telescope. The resolution, sensitivity, and sky coverage of such surveys is unprecedented, requiring new features and improvements to be made in existing source finders. Among them, reducing the false detection rate, particularly in the Galactic plane, and the ability to associate multiple disjoint islands into physical objects. To bridge this gap, we developed a new source finder, based on the Mask R-CNN object detection framework, capable of both detecting and classifying compact, extended, spurious, and poorly imaged sources in radio continuum images. The model was trained using ASKAP EMU data, observed during the Early Science and pilot survey phase, and previous radio survey data, taken with the VLA and ATCA telescopes. On the test sample, the final model achieves an overall detection completeness above 85\%, a reliability of $\sim$65\%, and a classification precision/recall above 90\%. Results obtained for all source classes are reported and discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源