论文标题

学习模型预测控制的抽样分布

Learning Sampling Distributions for Model Predictive Control

论文作者

Sacks, Jacob, Boots, Byron

论文摘要

基于抽样的方法已成为当代模型预测控制方法(MPC)的基石,因为它们对动力学或成本函数的不同性能没有限制,并且直接并行化。但是,它们的功效高度取决于采样分布本身的质量,通常认为这很简单,就像高斯人一样。这种限制可能导致样本远非最佳,导致性能差。最近的工作探索了通过在学习的潜在控制空间中取样来提高MPC的性能。但是,这些方法最终执行所有MPC参数更新,并在控制空间中的时间步长之间进行温暖启动。这要求我们依靠许多启发式方法来生成样品和更新分布,并可能导致次优性能。取而代之的是,我们建议在潜在空间中执行所有操作,从而使我们能够充分利用学习的分布。具体来说,我们将学习问题框架为双层优化,并展示如何使用反向传播的时间来训练控制器。通过使用分布的归一化流参数化,我们可以利用其拖动密度来避免对动力学和成本函数的不同性。最后,我们评估了对模拟机器人技术任务的提议方法,并证明了其超过先前方法的性能并通过减少的样本数量更好地缩放的能力。

Sampling-based methods have become a cornerstone of contemporary approaches to Model Predictive Control (MPC), as they make no restrictions on the differentiability of the dynamics or cost function and are straightforward to parallelize. However, their efficacy is highly dependent on the quality of the sampling distribution itself, which is often assumed to be simple, like a Gaussian. This restriction can result in samples which are far from optimal, leading to poor performance. Recent work has explored improving the performance of MPC by sampling in a learned latent space of controls. However, these methods ultimately perform all MPC parameter updates and warm-starting between time steps in the control space. This requires us to rely on a number of heuristics for generating samples and updating the distribution and may lead to sub-optimal performance. Instead, we propose to carry out all operations in the latent space, allowing us to take full advantage of the learned distribution. Specifically, we frame the learning problem as bi-level optimization and show how to train the controller with backpropagation-through-time. By using a normalizing flow parameterization of the distribution, we can leverage its tractable density to avoid requiring differentiability of the dynamics and cost function. Finally, we evaluate the proposed approach on simulated robotics tasks and demonstrate its ability to surpass the performance of prior methods and scale better with a reduced number of samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源