论文标题

用于鉴定时空定位的扩增机理的稀疏性促进分解分析

A sparsity-promoting resolvent analysis for the identification of spatiotemporally-localized amplification mechanisms

论文作者

Lopez-Doriga, Barbara, Ballouz, Eric, Bae, H. Jane, Dawson, Scott T. M.

论文摘要

这项工作介绍了分解分析的一种变体,该分析标识了时空和时间上稀疏的强迫和响应模式。这是通过使用稀疏主成分分析(PCA)算法来实现的,该算法将相关的优化问题提出为非线性本本特征问题,可以通过逆功率方法解决。我们将此方法应用于平行剪切流,这是在我们假设时间上傅立叶模式(如标准分解分析中)并获得空间定位的情况下,以及通过使用线性化的Navier-Stokes操作员在空间和时间内离散地允许暂时的距离模式。适当选择所需模式的稀疏性可以识别与空间和时间上局部的高扩增相对应的结构。我们报告这些结构与标准分析方法之间的相似性和差异。在验证了对统计结构通道流的这一时空分解分析后,我们接下来在时间周期性的Stokes边界层上实现了该方法,这证明了该方法对非统计稳态系统的适用性。

This work introduces a variant of resolvent analysis that identifies forcing and response modes that are sparse in both space and time. This is achieved through the use of a sparse principal component analysis (PCA) algorithm, which formulates the associated optimization problem as a nonlinear eigenproblem that can be solved with an inverse power method. We apply this method to parallel shear flows, both in the case where we assume Fourier modes in time (as in standard resolvent analysis) and obtain spatial localization, and where we allow for temporally-sparse modes through the use of a linearized Navier-Stokes operator discretized in both space and time. Appropriate choice of desired mode sparsity allows for the identification of structures corresponding to high amplification that are localized in both space and time. We report on the similarities and differences between these structures and those from standard methods of analysis. After validating this space-time resolvent analysis on statistically-stationary channel flow, we next implement the methodology on a time-periodic Stokes boundary layer, demonstrating the applicability of the approach to non-statistically-stationary systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源