论文标题

学习从观察性,偏见和随机数据绑定反事实推断

Learning to Bound Counterfactual Inference from Observational, Biased and Randomised Data

论文作者

Zaffalon, Marco, Antonucci, Alessandro, Huber, David, Cabañas, Rafael

论文摘要

我们解决了整合来自多个,可能有偏见,观察性和介入研究的数据,以最终计算结构因果模型中的反事实。我们从一个受选择偏差影响的单个观察数据集的情况开始。我们表明,可用数据的可能性没有局部最大值。这使我们能够使用因果期望最大化方案来计算部分可识别的反事实查询的近似界限,这是本文的重点。然后,我们通过图形转换将相同方法如何解决多个数据集的一般情况,无论是介入还是观察性,有偏见或无偏见的情况,都可以通过图形转换将其重新映射到前者中。系统的数值实验和关于姑息治疗的案例研究表明了我们方法的有效性和准确性,同时暗示了整合异质数据以在部分可识别性的情况下获得信息界限的好处。

We address the problem of integrating data from multiple, possibly biased, observational and interventional studies, to eventually compute counterfactuals in structural causal models. We start from the case of a single observational dataset affected by a selection bias. We show that the likelihood of the available data has no local maxima. This enables us to use the causal expectation-maximisation scheme to compute approximate bounds for partially identifiable counterfactual queries, which are the focus of this paper. We then show how the same approach can solve the general case of multiple datasets, no matter whether interventional or observational, biased or unbiased, by remapping it into the former one via graphical transformations. Systematic numerical experiments and a case study on palliative care show the effectiveness and accuracy of our approach, while hinting at the benefits of integrating heterogeneous data to get informative bounds in case of partial identifiability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源