论文标题
使用时空上下文聚合网络的天气预报的简单基线
Simple Baseline for Weather Forecasting Using Spatiotemporal Context Aggregation Network
论文作者
论文摘要
传统的天气预报依赖于域专业知识和计算密集的数值模拟系统。最近,随着数据驱动方法的发展,基于深度学习的天气预报一直引起人们的注意。从使用CNN,RNN和Transform的各种主链研究到使用带有辅助输入的天气观测数据集的培训策略,基于深度学习的天气预报取得了惊人的进步。所有这些进步都为天气预报的领域做出了贡献。但是,深度学习模型的许多要素和复杂的结构使我们无法达到物理解释。本文提出了一个具有时空上下文聚合网络(SIANET)的简单基线,该基线在W4C22的5个基准中的4个部分中实现了最先进的基线。这种简单但有效的结构仅以端到端的方式使用卫星图像和CNN,而无需使用多模型的合奏或微调。 Sianet的这种简单性可以用作固体基线,可以在天气预报中轻松地使用深度学习。
Traditional weather forecasting relies on domain expertise and computationally intensive numerical simulation systems. Recently, with the development of a data-driven approach, weather forecasting based on deep learning has been receiving attention. Deep learning-based weather forecasting has made stunning progress, from various backbone studies using CNN, RNN, and Transformer to training strategies using weather observations datasets with auxiliary inputs. All of this progress has contributed to the field of weather forecasting; however, many elements and complex structures of deep learning models prevent us from reaching physical interpretations. This paper proposes a SImple baseline with a spatiotemporal context Aggregation Network (SIANet) that achieved state-of-the-art in 4 parts of 5 benchmarks of W4C22. This simple but efficient structure uses only satellite images and CNNs in an end-to-end fashion without using a multi-model ensemble or fine-tuning. This simplicity of SIANet can be used as a solid baseline that can be easily applied in weather forecasting using deep learning.