论文标题
成对的脱节太空中的Moebius乐队
Pairwise disjoint Moebius bands in space
论文作者
论文摘要
V.V.Grushin和V.P.Palamodov在1962年证明,不可能将$ r^3 $放置在Moebius Band的每个同型同构中,无与伦比的许多成对的脱节Polyhedra。我们将此结果推广到两个方向。首先,我们将此结果概括为tame子集中的$ r^n $,$ n \ geqslant 3 $。其次,我们表明,在$ r^3 $的情况下,定理将任意拓扑嵌入(不一定是驯服)Moebius乐队。
V.V.Grushin and V.P.Palamodov proved in 1962 that it is impossible to place in $R^3$ uncountably many pairwise disjoint polyhedra each homeomorphic to the Moebius band. We generalize this result in two directions. First, we give a generalization of this result to tame subsets in $R^N$, $N\geqslant 3$. Second, we show that in case of $R^3$ the theorem holds for arbitrarily topologically embedded (not necessarily tame) Moebius bands.