论文标题

GPU上漂移仿真的半拉格朗日不连续的盖尔金方法

A semi-Lagrangian discontinuous Galerkin method for drift-kinetic simulations on GPUs

论文作者

Einkemmer, Lukas, Moriggl, Alexander

论文摘要

在本文中,我们证明了使用半拉格朗日不连续的盖尔金方法使用图形处理单元(GPU)来求解漂移运动方程的效率。在这种情况下,我们提出了一个二阶拆分方案和2D半拉格朗日方案,在Poloidal平面中。最终的方法能够将质量保存到机器的精度,因此由于缺乏CFL条件,我们可以采取大量时间步骤,并提供局部数据依赖性,这对于在最先进的高性能计算系统上获得良好的性能至关重要。我们报告了对漂流运动温度梯度(ITG)不稳定性的模拟,并表明我们的实施在A100 GPU上的性能高达600 GB/s。

In this paper, we demonstrate the efficiency of using semi-Lagrangian discontinuous Galerkin methods to solve the drift-kinetic equation using graphic processing units (GPUs). In this setting we propose a second order splitting scheme and a 2d semi-Lagrangian scheme in the poloidal plane. The resulting method is able to conserve mass up to machine precision, allows us to take large time steps due to the absence of a CFL condition and provides local data dependency which is essential to obtain good performance on state-of-the art high-performance computing systems. We report simulations of a drift-kinetic ion temperature gradient (ITG) instability and show that our implementation achieves a performance of up to 600 GB/s on an A100 GPU.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源