论文标题
复杂的$ \ mathrm {ga} _ {2} \ mathrm {o} _ {3} $ polymorphs通过准确和通用机器 - 机器学习的原子质潜力探索
Complex $\mathrm{Ga}_{2}\mathrm{O}_{3}$ Polymorphs Explored by Accurate and General-Purpose Machine-Learning Interatomic Potentials
论文作者
论文摘要
$ \ mathrm {ga} _ {2} \ mathrm {o} _ {3} $是对电子和光电的应用的宽频率半导体的宽频率半导体。但是,复杂的属性的重要信息共存$ \ mathrm {ga} _ {2} \ mathrm {o} _ {3} $ polymorphs和低对称性障碍结构。在这项工作中,我们开发了两种类型的基于内核的机器学习高斯近似电势(ML-GAP),用于$ \ MATHRM {GA} _ {2} \ Mathrm {o} _ {3} $,具有$ $β$/$β$/$ $/$ $/$ $ $ $ $ unive and polymer的$β$/$β$/$/$ univer的colmorment和centrental and contrentation and contrentation and contrentation and contrentation and centration and centrental and centrentate and centrity feneration entratione。我们在同时释放两个版本的原子间电位,即SOAPGAP和TABGAP,分别具有出色的准确性和超出加速度。我们系统地表明,肥皂和TABGAP都可以在与从头算结果的杰出协议中重现所有五个多晶型物的结构属性,同时提高了$ 5 \ times10^{2} $和$ 2 \ times10^{5} $计算速度的计算效率相比,相比之下,计算效率相比相比,相比之下。结果表明,液态相变的液态过渡分为三个不同的阶段,即“慢速过渡”,“快速过渡”和“唯一的GA迁移”。我们表明,可以从界面层中O和GA sublattices的不同行为来理解这种复杂的动力学。
$\mathrm{Ga}_{2}\mathrm{O}_{3}$ is a wide-bandgap semiconductor of emergent importance for applications in electronics and optoelectronics. However, vital information of the properties of complex coexisting $\mathrm{Ga}_{2}\mathrm{O}_{3}$ polymorphs and low-symmetry disordered structures is missing. In this work, we develop two types of kernel-based machine-learning Gaussian approximation potentials (ML-GAPs) for $\mathrm{Ga}_{2}\mathrm{O}_{3}$ with high accuracy for $β$/$κ$/$α$/$δ$/$γ$ polymorphs and generality for disordered stoichiometric structures. We release two versions of interatomic potentials in parallel, namely soapGAP and tabGAP, for excellent accuracy and exceeding speedup, respectively. We systematically show that both the soapGAP and tabGAP can reproduce the structural properties of all the five polymorphs in an exceptional agreement with ab initio results, meanwhile boost the computational efficiency with $5\times10^{2}$ and $2\times10^{5}$ computing speed increases compared to density functional theory, respectively. The results show that the liquid-solid phase transition proceeds in three different stages, a "slow transition", "fast transition" and "only Ga migration". We show that this complex dynamics can be understood in terms of different behavior of O and Ga sublattices in the interfacial layer.