论文标题
Atlas STGC检测器的高速率研究和前端放大器输入的滤波器电路的优化
High Rate Studies of the ATLAS sTGC Detector and Optimization of the Filter Circuit on the Input of the Front-End Amplifier
论文作者
论文摘要
预计CERN的大型强子对撞机(LHC)预计将于2029年升级到高光度LHC(HL-LHC),并实现5-7.5 $ \ times $ 10 $^{34} $ cm $ cm $^{ - 2} $ s $ s $ s $^{ - 1} $^{ - 1 $^{ - 1} $。与运行2中的瞬时亮度相比,瞬时发光度的增加了3-4倍以上。新的小轮(NSW)升级旨在在这种高后台速率环境中有效地运行。在本文中,我们使用几乎最终的前端电子设备总结了小型薄间隙室(STGC)的多次性能研究。我们证明,可以通过指数衰减来很好地描述效率与速率分布,而电子设备的消亡时间是高速效率下降的主要原因。然后,我们演示了几种可以降低电子设备停止时间的方法,从而最大程度地减少效率损失。一种这样的方法是安装PI-NETWORK输入过滤器或上拉电阻,以最大程度地减少电荷输入到放大器中。我们使用测量结果优化了PI-NETWORK电容和上拉电阻。此处显示的结果不仅对于最终确定前端板上的组件至关重要,而且对于设置Atlas洞穴中STGC检测器和电子产品的最佳操作参数至关重要。
The Large Hadron Collider (LHC) at CERN is expected to be upgraded to the High-Luminosity LHC (HL-LHC) by 2029 and achieve instantaneous luminosity around 5 - 7.5 $\times$ 10$^{34}$cm$^{-2}$ s$^{-1}$. This represents a more than 3-4 fold increase in the instantaneous luminosity compared to what has been achieved in Run 2. The New Small Wheel (NSW) upgrade is designed to be able to operate efficiently in this high background rate environment. In this article, we summarize multiple performance studies of the small-strip Thin Gap Chamber (sTGC) at high rate using nearly final front-end electronics. We demonstrate that the efficiency versus rate distribution can be well described by an exponential decay with electronics dead-time being the primary cause of loss of efficiency at high rate. We then demonstrate several methods that can decrease the electronics dead-time and therefore minimize efficiency loss. One such method is to install either a pi-network input filter or pull-up resistor to minimize the charge input into the amplifier. We optimized the pi-network capacitance and pull-up resistor resistance using the results from our measurements. The results shown here were not only critical to finalizing the components on the front-end board, but also are critical for setting the optimal operating parameters of the sTGC detector and electronics in the ATLAS cavern.