论文标题

中性原子量子处理器上的财务风险管理

Financial Risk Management on a Neutral Atom Quantum Processor

论文作者

Leclerc, Lucas, Ortiz-Guitierrez, Luis, Grijalva, Sebastian, Albrecht, Boris, Cline, Julia R. K., Elfving, Vincent E., Signoles, Adrien, Henriet, Loïc, Del Bimbo, Gianni, Sheikh, Usman Ayub, Shah, Maitree, Andrea, Luc, Ishtiaq, Faysal, Duarte, Andoni, Mugel, Samuel, Caceres, Irene, Kurek, Michel, Orus, Roman, Seddik, Achraf, Hammammi, Oumaima, Isselnane, Hacene, M'tamon, Didier

论文摘要

能够处理金融界收集的大型数据集的机器学习模型通常会变成昂贵的黑匣子。量子计算范式表明,与经典算法相结合的新优化技术可能会提供竞争性,更快,更可解释的模型。在这项工作中,我们提出了一种量子增强的机器学习解决方案,以预测降级信用评级,也称为金融风险管理领域的堕落天使预测。我们在中性原子量子处理单元上实现了该解决方案,在现实生活数据集上,该解决方案最多可容纳60 QUAT。我们报告了针对最先进的随机森林基准测试的竞争性能,同时我们的模型可以更好地解释性和可比的培训时间。我们研究了如何通过基于张量网络的数值模拟来近期验证我们的想法的绩效。

Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源