论文标题
THESAN-HR:电离将如何影响早期星系的演变?
THESAN-HR: How does reionization impact early galaxy evolution?
论文作者
论文摘要
早期星系是电离的辐射来源,预计电源的光热反馈预计将降低低质量光环中恒星形成的效率。因此,为了充分了解电离和银河系的形成,我们必须研究它们对彼此的影响。到目前为止,Thesan项目旨在研究星系形成物理学对电源的影响,但是在这里,我们介绍了新的Thesan模拟,其较高分辨率($ M _ {\ rm B} \大约10^4 $ 〜M $ $ _ \ odot $),旨在自我统一地研究Repreaction of Recection of Receion on Galaxies or nor on Galaxies or nor on Callaxies。通过解决具有病毒温度的光环$ t _ {\ rm vir} <10^4 $ 〜k,我们能够证明简单,空间均匀的,消除模型不足以研究早期星系的进化。将自一致的三个模型(使用完全耦合的辐射流体动力学)与均匀的紫外线背景进行比较,我们能够证明,预计Thesan的星系在物理范围内会更大(通过因子$ \ sim 2 $)(通过$ \ sim 2 $),较少的金属富含(由$ \ sim 0.2 $ dex),以及$ sim $ a $ a $ a $ a $ a $ a $ \ m \ m,m。 1500}〜=〜-10 $)$ z = 5 $。我们表明,恒星形成和富集模式的差异导致低质量光环,低金属恒星形成甚至光环的占用分数的恒星形成的预测显着不同。我们认为,旨在研究早期星系形成的宇宙星系形成模拟$ z \ gtrsim 3 $必须采用空间不均匀的紫外线背景来准确地繁殖星系特性。
Early galaxies were the radiation source for reionization, with the photoheating feedback from the reionization process expected to reduce the efficiency of star formation in low mass haloes. Hence, to fully understand reionization and galaxy formation, we must study their impact on each other. The THESAN project has so far aimed to study the impact of galaxy formation physics on reionization, but here we present the new THESAN simulations with a factor 50 higher resolution ($m_{\rm b} \approx 10^4$~M$_\odot$) that aim to self-consistently study the back-reaction of reionization on galaxies. By resolving haloes with virial temperatures $T_{\rm vir} < 10^4$~K, we are able to demonstrate that simplistic, spatially-uniform, reionization models are not sufficient to study early galaxy evolution. Comparing the self-consistent THESAN model (employing fully coupled radiation hydrodynamics) to a uniform UV background, we are able to show that galaxies in THESAN are predicted to be larger in physical extent (by a factor $\sim 2$), less metal enriched (by $\sim 0.2$~dex), and less abundant (by a factor $\sim 10$ at $M_{\rm 1500}~=~-10$) by $z=5$. We show that differences in star formation and enrichment patterns lead to significantly different predictions for star formation in low mass haloes, low-metallicity star formation, and even the occupation fraction of haloes. We posit that cosmological galaxy formation simulations aiming to study early galaxy formation $z \gtrsim 3$ must employ a spatially inhomogeneous UV background to accurately reproduce galaxy properties.