论文标题
平面#CSP平等对应于量子同构 - 一个Holant的观点
Planar #CSP Equality Corresponds to Quantum Isomorphism -- A Holant Viewpoint
论文作者
论文摘要
最近,Mančinska和Roberson证明了两个图$ g $和$ g'$是量子同构的,并且仅当他们接受所有平面图中相同数量的同形数字时。我们将此结果扩展到平面#CSP,并使用任何一对$ \ Mathcal {f} $和$ \ Mathcal {f}'$ of Real-valued,nutional-artial-arity约束函数。图形同构是$ \ Mathcal {f} $和$ \ Mathcal {f}'$的每个特殊情况。我们的治疗使用了平面Holant问题的框架。为了证明量子同构约束函数集在任何平面#CSP实例上都具有相同的值,我们使用量子置换矩阵$ \ MATHCAL {U} $定义量子同构的新型全息变换形式。由于$ \ Mathcal {u} $的条目的非销售,事实证明,这种形式的全息变换仅适用于平面Holant。为了证明相反,我们介绍了一组约束函数的量子自动形态组QUT $(\ MATHCAL {f})$ Holant $(\ Mathcal {f} \,| \,\ Mathcal {eq})$量子小工具。然后,我们为约束功能定义了一个新的(投影)连接性的概念,并在保留量子自动形态组的同时降低了ARITY。最后,为了解决从价值的0-1概括到实现的约束函数所带来的挑战,我们在经典环境中适应了洛瓦斯兹的技术,以实现现实加权图的同构为量子同构的同构。
Recently, Mančinska and Roberson proved that two graphs $G$ and $G'$ are quantum isomorphic if and only if they admit the same number of homomorphisms from all planar graphs. We extend this result to planar #CSP with any pair of sets $\mathcal{F}$ and $\mathcal{F}'$ of real-valued, arbitrary-arity constraint functions. Graph homomorphism is the special case where each of $\mathcal{F}$ and $\mathcal{F}'$ contains a single symmetric 0-1-valued binary constraint function. Our treatment uses the framework of planar Holant problems. To prove that quantum isomorphic constraint function sets give the same value on any planar #CSP instance, we apply a novel form of holographic transformation of Valiant, using the quantum permutation matrix $\mathcal{U}$ defining the quantum isomorphism. Due to the noncommutativity of $\mathcal{U}$'s entries, it turns out that this form of holographic transformation is only applicable to planar Holant. To prove the converse, we introduce the quantum automorphism group Qut$(\mathcal{F})$ of a set of constraint functions $\mathcal{F}$, and characterize the intertwiners of Qut$(\mathcal{F})$ as the signature matrices of planar Holant$(\mathcal{F}\,|\,\mathcal{EQ})$ quantum gadgets. Then we define a new notion of (projective) connectivity for constraint functions and reduce arity while preserving the quantum automorphism group. Finally, to address the challenges posed by generalizing from 0-1 valued to real-valued constraint functions, we adapt a technique of Lovász in the classical setting for isomorphisms of real-weighted graphs to the setting of quantum isomorphisms.