论文标题

部分可观测时空混沌系统的无模型预测

GaitVibe+: Enhancing Structural Vibration-based Footstep Localization Using Temporary Cameras for In-home Gait Analysis

论文作者

Dong, Yiwen, Liu, Jingxiao, Noh, Hae Young

论文摘要

家庭步态分析对于为步态疾病患者提供早期诊断和适应性治疗非常重要。现有系统包括可穿戴设备和压力垫,但可扩展性有限。最近的研究开发了基于视觉的系统,以实现可扩展,准确的家庭步态分析,但由于人们的外表暴露,它面临隐私问题。我们先前的工作为步态监测开发了脚步诱导的结构振动感测,该结构振动是无设备,广泛的,并且被认为更易于隐私。尽管它在时间步态事件提取方面取得了成功,但由于不精确的脚步定位,它显示出有限的空间步态参数估计的性能。特别是,定位误差主要来自振动传感器处波浪到达时间的估计误差及其对波速估计的误差传播。因此,我们提出了Gaitvibe+,这是一种基于振动的脚步定位方法,该方法与临时安装的摄像机融合在一起,用于家庭步态分析。我们的方法有两个阶段:融合和操作。在融合阶段,安装了相机和振动传感器,以仅记录受试者脚步数据的几个试验,我们通过这些试验表征了波浪到达时间的不确定性,并为给定结构的波速度曲线建模。在操作阶段,我们卸下相机以在家中保留隐私。脚步定位是通过在多个振动传感器上估计到达(TDOA)的时间差(TDOA)进行的,该传感器的准确性通过融合阶段的降低不确定性和速度建模来提高其精度。我们通过50次步行试验的现实世界实验评估了Gaitvibe+。只有3个多模式融合试验,我们的方法的平均定位误差为0.22米,这将空间步态参数误差从111%降低到27%。

In-home gait analysis is important for providing early diagnosis and adaptive treatments for individuals with gait disorders. Existing systems include wearables and pressure mats, but they have limited scalability. Recent studies have developed vision-based systems to enable scalable, accurate in-home gait analysis, but it faces privacy concerns due to the exposure of people's appearances. Our prior work developed footstep-induced structural vibration sensing for gait monitoring, which is device-free, wide-ranged, and perceived as more privacy-friendly. Although it has succeeded in temporal gait event extraction, it shows limited performance for spatial gait parameter estimation due to imprecise footstep localization. In particular, the localization error mainly comes from the estimation error of the wave arrival time at the vibration sensors and its error propagation to wave velocity estimations. Therefore, we present GaitVibe+, a vibration-based footstep localization method fused with temporarily installed cameras for in-home gait analysis. Our method has two stages: fusion and operating. In the fusion stage, both cameras and vibration sensors are installed to record only a few trials of the subject's footstep data, through which we characterize the uncertainty in wave arrival time and model the wave velocity profiles for the given structure. In the operating stage, we remove the camera to preserve privacy at home. The footstep localization is conducted by estimating the time difference of arrival (TDoA) over multiple vibration sensors, whose accuracy is improved through the reduced uncertainty and velocity modeling during the fusion stage. We evaluate GaitVibe+ through a real-world experiment with 50 walking trials. With only 3 trials of multi-modal fusion, our approach has an average localization error of 0.22 meters, which reduces the spatial gait parameter error from 111% to 27%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源