论文标题

PIGV $^2 $:通过心跳和呼吸引起的地面振动监测猪的生命体征

PigV$^2$: Monitoring Pig Vital Signs through Ground Vibrations Induced by Heartbeat and Respiration

论文作者

Dong, Yiwen, Codling, Jesse R, Rohrer, Gary, Miles, Jeremy, Sharma, Sudhendu, Brown-Brandl, Tami, Zhang, Pei, Noh, Hae Young

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Pig vital sign monitoring (e.g., estimating the heart rate (HR) and respiratory rate (RR)) is essential to understand the stress level of the sow and detect the onset of parturition. It helps to maximize peri-natal survival and improve animal well-being in swine production. The existing approach mainly relies on manual measurement, which is labor-intensive and only provides a few points of information. Other sensing modalities such as wearables and cameras are developed to enable more continuous measurement, but are still limited due to animal discomfort, data transfer, and storage challenges. In this paper, we introduce PigV$^2$, the first system to monitor pig heart rate and respiratory rate through ground vibrations. Our approach leverages the insight that both heartbeat and respiration generate ground vibrations when the sow is lying on the floor. We infer vital information by sensing and analyzing these vibrations. The main challenge in developing PigV$^2$ is the overlap of vital- and non-vital-related information in the vibration signals, including pig movements, pig postures, pig-to-sensor distances, and so on. To address this issue, we first characterize their effects, extract their current status, and then reduce their impact by adaptively interpolating vital rates over multiple sensors. PigV$^2$ is evaluated through a real-world deployment with 30 pigs. It has 3.4% and 8.3% average errors in monitoring the HR and RR of the sows, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源