论文标题
CDT和Horava-Lifshitz QG二维
CDT and Horava-Lifshitz QG in Two Dimensions
论文作者
论文摘要
二维因果动力学三角剖分($ 2 $ d CDT)是量子几何形状的晶格模型。在$ 2 $ d的CDT中,可以分析量子效应,并通过连续限制探索物理。众所周知,连续理论是二维可预测的horava-lifshitz量子重力($ 2 $ d可预测的HL QG)。在本章中,我们希望详细介绍$ 2 $ d CDT和$ 2 $ d Proghtable HL QG之间的关系。
The two-dimensional causal dynamical triangulations ($2$d CDT) is a lattice model of quantum geometry. In $2$d CDT, one can deal with the quantum effects analytically and explore the physics through the continuum limit. The continuum theory is known to be two-dimensional projectable Horava-Lifshitz quantum gravity ($2$d projectable HL QG). In this chapter, we wish to review the very relation between $2$d CDT and $2$d projectable HL QG in detail.