论文标题

经济学和金融方面的贝叶斯预测:现代评论

Bayesian Forecasting in Economics and Finance: A Modern Review

论文作者

Martin, Gael M., Frazier, David T., Maneesoonthorn, Worapree, Loaiza-Maya, Ruben, Huber, Florian, Koop, Gary, Maheu, John, Nibbering, Didier, Panagiotelis, Anastasios

论文摘要

贝叶斯统计范式为概率预测提供了一种原则性和连贯的方法。所有未知数的不确定性都可以表征任何预测问题 - 模型,参数,潜在状态 - 可以通过集成或平均过程进行明确量化,并将其纳入预测分布中。贝叶斯的预测与该方法的优雅结合在一起,现在是贝叶斯计算的新兴领域的基础,这使贝叶斯预测几乎可以出于任何问题而产生任何问题,无论大小或复杂。本次审查的主题是贝叶斯预测的当前状态。目的是为读者提供有关该领域的现代方法的概述,这是在某些历史背景下设定的;并提供足够的计算细节,以帮助读者实施。

The Bayesian statistical paradigm provides a principled and coherent approach to probabilistic forecasting. Uncertainty about all unknowns that characterize any forecasting problem -- model, parameters, latent states -- is able to be quantified explicitly, and factored into the forecast distribution via the process of integration or averaging. Allied with the elegance of the method, Bayesian forecasting is now underpinned by the burgeoning field of Bayesian computation, which enables Bayesian forecasts to be produced for virtually any problem, no matter how large, or complex. The current state of play in Bayesian forecasting in economics and finance is the subject of this review. The aim is to provide the reader with an overview of modern approaches to the field, set in some historical context; and with sufficient computational detail given to assist the reader with implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源