论文标题
介电弹性波收集器的多目标模型预测性控制
Multi-Objective Model-Predictive Control for Dielectric Elastomer Wave Harvesters
论文作者
论文摘要
这项贡献涉及波能转换器(WEC)设备概念的多目标模型预测性控制(MPC),该概念可以使用介电弹性体发生器(DEG)功率起飞系统从海浪中收集能量。我们的目标是通过控制最大化提取的能量,同时最大程度地减少对DEG的累积损害。关于随机波中的系统操作,我们首先通过解决最佳控制问题来生成地面真相解决方案,并分析MPC性能以确定预测范围,从而使计算的准确性和效率不足。 MPC方案中的固定权重可以为可变的海病产生不可预测的成本,这意味着平均成本累积的速度可能大大差异。为了引导这种成本增长,我们提出了一种启发式方法,以通过更改成本功能的加权来适应算法,以实现在固定时间内积累足够小的损害的长期目标。提出了模拟的案例研究,以评估所提出的MPC框架和权重适应算法的性能。拟议的启发式事实证明能够限制累积损害的数量,同时保持接近(甚至提高)使用可比的固定重量MPC获得的能量产量。
This contribution deals with multi-objective model-predictive control (MPC) of a wave energy converter (WEC) device concept, which can harvest energy from sea waves using a dielectric elastomer generator (DEG) power take-off system. We aim to maximise the extracted energy through control while minimising the accumulated damage to the DEG. With reference to system operation in stochastic waves, we first generate ground truth solutions by solving an optimal control problem, and we analyse the MPC performance to determine a prediction horizon that trades off accuracy and efficiency for computation. Fixed weights in the MPC scheme can produce unpredictable costs for variable sea condition, meaning the average rate of cost accumulation can vary vastly. To steer this cost growth, we propose a heuristic to adapt the algorithm by changing the weighting of the cost functions using for fulfilling the long-time goal of accumulating a small enough damage in a fixed time. A simulated case-study is presented in order to evaluate the performance of the proposed MPC framework and the weight-adaptation algorithm. The proposed heuristic proves to be able to limit the amount of accumulated damage while remaining close to (or even improving) the energy yield obtained with a comparable fixed-weight MPC.