论文标题

认识何时偏好系统接近录取主列表

Recognizing when a preference system is close to admitting a master list

论文作者

Schlotter, Ildikó

论文摘要

优先系统$ \ MATHCAL {I} $是一个无方向的图表,顶点在其邻居中具有首选项,而$ \ Mathcal {i} $如果所有首选项都可以从与所有顶点的单个订购中得出,则允许主列表。我们研究了确定给定优先系统$ \ Mathcal {i} $是否接近基于三个不同距离测量的主列表的问题。我们确定以下问题的计算复杂性:$ \ MATHCAL {i} $可以通过(I)$ K $交换在偏好中修改,(ii)$ k $ edge删除,或(iii)$ k $ vertex删除删除,以便所产生的实例允许公认的实例?我们从参数化复杂性和近似的角度详细研究了这些问题。我们还提出了两个与稳定且受欢迎的比赛有关的应用程序。

A preference system $\mathcal{I}$ is an undirected graph where vertices have preferences over their neighbors, and $\mathcal{I}$ admits a master list if all preferences can be derived from a single ordering over all vertices. We study the problem of deciding whether a given preference system $\mathcal{I}$ is close to admitting a master list based on three different distance measures. We determine the computational complexity of the following questions: can $\mathcal{I}$ be modified by (i) $k$ swaps in the preferences, (ii) $k$ edge deletions, or (iii) $k$ vertex deletions so that the resulting instance admits a master list? We investigate these problems in detail from the viewpoint of parameterized complexity and of approximation. We also present two applications related to stable and popular matchings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源