论文标题
罚款:3D全身舞蹈一代的细粒度编排数据集
FineDance: A Fine-grained Choreography Dataset for 3D Full Body Dance Generation
论文作者
论文摘要
由于现有数据集的局限性以及细粒度的手运动和舞蹈类型的固有复杂性,从给定的音乐中生成全身和多种多样的舞蹈序列是一项艰巨的任务。为了解决这些问题,我们提出了罚款,其中包含14.6小时的音乐舞配对数据,并具有精细的手动运动,细粒度的流派(22个舞蹈类型)和准确的姿势。据我们所知,罚款是最大的音乐舞配对数据集,最大的舞蹈流派。此外,为了解决以前方法中现有的单调和不自然的手动运动,我们提出了一个全身舞蹈生成网络,该网络利用扩散模型的各种产生能力来解决单调问题,并使用专家网解决不真实的问题。为了进一步增强产生的舞蹈的流派匹配和长期稳定性,我们提出了一种流派和相干意识的检索模块。此外,我们提出了一个名为“流派匹配得分”的新颖指标,以评估舞蹈和音乐之间的类型匹配学位。定量和定性实验证明了罚款的质量以及Finenet的最新性能。可以在我们的网站上找到罚款数据集和更多定性样本。
Generating full-body and multi-genre dance sequences from given music is a challenging task, due to the limitations of existing datasets and the inherent complexity of the fine-grained hand motion and dance genres. To address these problems, we propose FineDance, which contains 14.6 hours of music-dance paired data, with fine-grained hand motions, fine-grained genres (22 dance genres), and accurate posture. To the best of our knowledge, FineDance is the largest music-dance paired dataset with the most dance genres. Additionally, to address monotonous and unnatural hand movements existing in previous methods, we propose a full-body dance generation network, which utilizes the diverse generation capabilities of the diffusion model to solve monotonous problems, and use expert nets to solve unreal problems. To further enhance the genre-matching and long-term stability of generated dances, we propose a Genre&Coherent aware Retrieval Module. Besides, we propose a novel metric named Genre Matching Score to evaluate the genre-matching degree between dance and music. Quantitative and qualitative experiments demonstrate the quality of FineDance, and the state-of-the-art performance of FineNet. The FineDance Dataset and more qualitative samples can be found at our website.