论文标题
超越模块化对称性的杂片de Sitter
Heterotic de Sitter Beyond Modular Symmetry
论文作者
论文摘要
我们使用由整个Kähler模量,Dilaton和非扰动校正的有效理论研究了$ 4D $杂种环孔的真空吸尘器,以尊重模块化不变性。我们证明了几类真空吸尘器的三个de Sitter无定理,从而证实并扩展了先前的猜想。此外,我们提供的证据表明,标量电势的极值可能发生在psl $(2,\ mathbb {z})$基本域的基本域内,这是矛盾的。我们还说明了无关定理中的一个漏洞,并确定允许稳定的de Sitter真空的标准。最后,我们在Dilaton部门中识别出固有的严重的非扰动效应,可以利用这种漏洞并有可能实现Sitter Vacua
We study the vacua of $4d$ heterotic toroidal orbifolds using effective theories consisting of an overall Kähler modulus, the dilaton, and non-perturbative corrections to both the superpotential and Kähler potential that respect modular invariance. We prove three de Sitter no-go theorems for several classes of vacua and thereby substantiate and extend previous conjectures. Additionally, we provide evidence that extrema of the scalar potential can occur inside the PSL$(2,\mathbb{Z})$ fundamental domain of the Kähler modulus, in contradiction of a separate conjecture. We also illustrate a loophole in the no-go theorems and determine criteria that allow for metastable de Sitter vacua. Finally, we identify inherently stringy non-perturbative effects in the dilaton sector that could exploit this loophole and potentially realize de Sitter vacua