论文标题

石墨烯 - 电解质双层的恒定化学电势量子机械分子动力学模拟

Constant Chemical Potential-Quantum Mechanical-Molecular Dynamics simulations of the Graphene-electrolyte double layer

论文作者

Di Pasquale, Nicodemo, Finney, Aaron R., Elliott, Joshua, Carbone, Paola, Salvalaglio, Matteo

论文摘要

我们介绍了两个框架的耦合 - 伪开开的边界模拟方法称为恒定电势分子动力学模拟(C $μ$ MD),结合了QMMD计算 - 以描述与电解质接触的石墨烯电极的性质。然后将所得的C $ $ $ $ QMMD模型应用于散装溶液浓度的三个离子溶液(LICL,NaCl和KCl),范围为0.5 m至6 m,与带电的石墨烯电极接触。我们在这里描述的新方法提供了一种模拟协议,以控制电解质溶液的浓度,同时包括完全极化的电极表面的效果。借助此耦合,我们能够准确地对双层的电极和溶液侧进行建模,并对带电界面处电解质的性质进行详尽的分析,例如电解质的筛选能力和静电势轮廓。我们还报告了在分析了每个离子物种的整个浓度范围内积分电化学双层电容的计算,而QM模拟则可以访问差分和积分量子电容。我们强调了微妙的特征,例如在界面处的钾吸附或离子形成簇的趋势,从我们的模拟中出现,有助于解释石墨烯存储电荷的能力并暗示对淡化的影响。

We present the coupling of two frameworks -- the pseudo-open boundary simulation method known as constant potential Molecular Dynamics simulations (C$μ$MD), combined with QMMD calculations -- to describe the properties of graphene electrodes in contact with electrolytes. The resulting C$μ$QMMD model was then applied to three ionic solutions (LiCl, NaCl and KCl in water) at bulk solution concentrations ranging from 0.5 M up to 6 M in contact with a charged graphene electrode. The new approach we are describing here provides a simulation protocol to control the concentration of the electrolyte solutions while including the effects of a fully polarizable electrode surface. Thanks to this coupling, we are able to accurately model both the electrode and solution side of the double layer and provide a thorough analysis of the properties of electrolytes at charged interfaces, such as the screening ability of the electrolyte and the electrostatic potential profile. We also report the calculation of the integral electrochemical double layer capacitance in the whole range of concentrations analysed for each ionic species, while the QM simulations provide access to the differential and integral quantum capacitance. We highlight how subtle features, such as the adsorption of potassium at the interface or the tendency of the ions to form clusters, emerge from our simulations, contribute to explaining the ability of graphene to store charge and suggest implications for desalination.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源