论文标题

连续提示分解复杂问题

Successive Prompting for Decomposing Complex Questions

论文作者

Dua, Dheeru, Gupta, Shivanshu, Singh, Sameer, Gardner, Matt

论文摘要

回答需要做出潜在决策的复杂问题是一项艰巨的任务,尤其是在有限的监督下。最近的作品利用大语言模型(LMS)的功能通过演示如何在单个通过中解决复杂问题的同时演示如何输出中间合理化来以几次摄入设置进行复杂的问题回答。我们介绍``连续提示'',在其中迭代地将复杂的任务分解为简单的任务,解决它,然后重复该过程,直到获得最终解决方案为止。连续提示将监督从监督中分解复杂问题的监督,以回答简单问题,(1)有多个机会在每个推理步骤(2)中分别学习问题分解的示例(2)从问答中学习问题分解,包括使用合成数据,以及(3)使用BESPOKE(FINE-TUNNED)组件来表现出大型LM的作用。中间监督通常是手动编写的,收集可能很昂贵。我们介绍了一种生成合成数据集的方法,该数据集可用于引导模型分解和回答中间问题的能力。与具有相同监督的最先进的模型相比,我们的最佳模型(连续提示)在Drop数据集的几个摄像机版本上实现了〜5%的绝对F1。

Answering complex questions that require making latent decisions is a challenging task, especially when limited supervision is available. Recent works leverage the capabilities of large language models (LMs) to perform complex question answering in a few-shot setting by demonstrating how to output intermediate rationalizations while solving the complex question in a single pass. We introduce ``Successive Prompting'', where we iteratively break down a complex task into a simple task, solve it, and then repeat the process until we get the final solution. Successive prompting decouples the supervision for decomposing complex questions from the supervision for answering simple questions, allowing us to (1) have multiple opportunities to query in-context examples at each reasoning step (2) learn question decomposition separately from question answering, including using synthetic data, and (3) use bespoke (fine-tuned) components for reasoning steps where a large LM does not perform well. The intermediate supervision is typically manually written, which can be expensive to collect. We introduce a way to generate a synthetic dataset which can be used to bootstrap a model's ability to decompose and answer intermediate questions. Our best model (with successive prompting) achieves an improvement of ~5% absolute F1 on a few-shot version of the DROP dataset when compared with a state-of-the-art model with the same supervision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源