论文标题

N5K挑战:LSST宇宙学的非列表集成

The N5K Challenge: Non-Limber Integration for LSST Cosmology

论文作者

Leonard, C. D., Ferreira, T., Fang, X., Reischke, R., Schoeneberg, N., Tröster, T., Alonso, D., Campagne, J. E., Lanusse, F., Slosar, A., Ishak, M., Collaboration, the LSST Dark Energy Science

论文摘要

宇宙学成像调查的统计能力迅速增加,要求我们重新评估有效性方案,以加速相关理论预测的各种近似值。在本文中,我们介绍了“ N5K非列表一体化挑战”的结果,其目的是量化不同方法的性能,以计算星系数量计数的角度和宇宙剪切数据,而无需调用所谓的“ Limber近似值”,而在卢比·苏联实行的ubin opveration of Spice和时间(lsssp)的背景下(lssss)。我们从精确度和速度方面量化了三个非限制性实现的性能:$ {\ tt fkem(cosmolike)} $,$ {\ tt levin} $,以及$ {\ tt Matter} $,它们本身基于不同的集成方案和近似值。我们发现,在挑战的3x2pt LSST LSST SECARIO中,$ {\ tt fkem(cosmolike)} $可以通过相当大的保证金产生最快的运行时间,可在贝叶斯参数推理中使用可实现的余量。但是,这种方法需要进一步的开发和测试,以将其使用扩展到某些分析方案,尤其是涉及规模依赖增长率的方案。出于此和本文讨论的其他原因,对于全面探索参数空间可能是必需的替代方法,例如$ {\ tt Matter} $和$ {\ tt Levin} $。我们还发现,对于$ \ ell = 200-1000 $的LSST年10 3x2pt Analysis,通常的一阶限制近似不足以准确,而在这些尺度上调用二阶Limber近似(使用较小$ \ ell $的完整非LIMBER方法)确实足够了。

The rapidly increasing statistical power of cosmological imaging surveys requires us to reassess the regime of validity for various approximations that accelerate the calculation of relevant theoretical predictions. In this paper, we present the results of the 'N5K non-Limber integration challenge', the goal of which was to quantify the performance of different approaches to calculating the angular power spectrum of galaxy number counts and cosmic shear data without invoking the so-called 'Limber approximation', in the context of the Rubin Observatory Legacy Survey of Space and Time (LSST). We quantify the performance, in terms of accuracy and speed, of three non-Limber implementations: ${\tt FKEM (CosmoLike)}$, ${\tt Levin}$, and ${\tt matter}$, themselves based on different integration schemes and approximations. We find that in the challenge's fiducial 3x2pt LSST Year 10 scenario, ${\tt FKEM (CosmoLike)}$ produces the fastest run time within the required accuracy by a considerable margin, positioning it favourably for use in Bayesian parameter inference. This method, however, requires further development and testing to extend its use to certain analysis scenarios, particularly those involving a scale-dependent growth rate. For this and other reasons discussed herein, alternative approaches such as ${\tt matter}$ and ${\tt Levin}$ may be necessary for a full exploration of parameter space. We also find that the usual first-order Limber approximation is insufficiently accurate for LSST Year 10 3x2pt analysis on $\ell=200-1000$, whereas invoking the second-order Limber approximation on these scales (with a full non-Limber method at smaller $\ell$) does suffice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源