论文标题

电子词:通过简单的机器人抓手进行触觉感测和分类,用于扩展滚动操作

E-TRoll: Tactile Sensing and Classification via A Simple Robotic Gripper for Extended Rolling Manipulations

论文作者

Zhou, Xin, Spiers, Adam J.

论文摘要

机器人触觉传感提供了一种识别视觉失败的物体及其特性的方法。机器人操纵中触觉感知的先前工作经常集中在探索程序(EPS)上。然而,在EPS的一小部分时间内,还以人类为灵感的技术可以收集丰富的数据。我们提出了一种简单的3多机器人手设计,通过可变宽度的棕榈和相关的控制系统优化了对象滚动任务。该系统可以动态调整手指碱基之间的距离,以响应对象行为。与固定的手指碱基相比,该技术显着增加了在单个滚动运动过程中暴露于手指触觉阵列的物体面积(对于30毫米直径30毫米的圆柱体观察到了超过60%的增加)。此外,本文介绍了收集到的时空数据集的特征提取算法,该算法的重点是对象角识别,分析和紧凑的表示。该技术将每个数据样本的维度大幅度降低了从10 x 1500时间序列数据到80个特征,通过主成分分析(PCA)将其进一步降低到22个组件。对物体形状识别的三个不同的几何对象,对滚动三个不同的几何对象进行了90个观察,对滚动三个不同的几何对象进行了90个观察,对滚动三个不同的几何对象进行了90个观察,对一个90的观察到了90个观察结果,对物体形状识别进行了95.6%的三倍的交叉验证精度,对一个90的观察进行了训练。

Robotic tactile sensing provides a method of recognizing objects and their properties where vision fails. Prior work on tactile perception in robotic manipulation has frequently focused on exploratory procedures (EPs). However, the also-human-inspired technique of in-hand-manipulation can glean rich data in a fraction of the time of EPs. We propose a simple 3-DOF robotic hand design, optimized for object rolling tasks via a variable-width palm and associated control system. This system dynamically adjusts the distance between the finger bases in response to object behavior. Compared to fixed finger bases, this technique significantly increases the area of the object that is exposed to finger-mounted tactile arrays during a single rolling motion (an increase of over 60% was observed for a cylinder with a 30-millimeter diameter). In addition, this paper presents a feature extraction algorithm for the collected spatiotemporal dataset, which focuses on object corner identification, analysis, and compact representation. This technique drastically reduces the dimensionality of each data sample from 10 x 1500 time series data to 80 features, which was further reduced by Principal Component Analysis (PCA) to 22 components. An ensemble subspace k-nearest neighbors (KNN) classification model was trained with 90 observations on rolling three different geometric objects, resulting in a three-fold cross-validation accuracy of 95.6% for object shape recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源