论文标题

从低价值计数数据中进行可靠估计的生命贝粒子滤波器

The Lifebelt Particle Filter for robust estimation from low-valued count data

论文作者

Corbella, Alice, McKinley, Trevelyan J., Birrell, Paul J., De Angelis, Daniela, Presanis, Anne M., Roberts, Gareth O., Spencer, Simon E. F.

论文摘要

粒子过滤方法可以应用于有限域的离散空间中的估计问题,以对未知的隐藏状态进行采样和边缘化。与连续设置一样,可能会出现诸如粒子降解之类的问题:所提出的粒子与数据可能不兼容,位于低概率区域或边界约束之外,并且离散系统可能导致所有粒子的权重为零。在本文中,我们介绍了救生带粒子滤波器(LBPF),这是一种在低价值计数问题中稳健估计的新方法。 LBPF将标准粒子过滤器与一个(或更多)救生带颗粒结合在一起,通过结构,该颗粒位于离散随机变量的边界内,因此与数据兼容。重新采样和未取样的颗粒的混合物可以保存救生带颗粒,该颗粒与剩余的粒子群一起提供了来自过滤分布的样品,可用于生成可能性的无偏估计。 LBPF的主要好处是,只有一个或几个,明智地选择的颗粒足以防止颗粒塌陷。与其他方法不同,在参数空间的区域中,无需增加粒子的数量,因此是计算工作的数量,从而产生较小的隐藏状态。 LBPF可以在伪核心方案中使用,以绘制静态参数,$ \boldsymbolθ$,管理系统的推论。我们在这里解决了在流行病期间住院患者死亡概率和康复的参数估计。

Particle filtering methods can be applied to estimation problems in discrete spaces on bounded domains, to sample from and marginalise over unknown hidden states. As in continuous settings, problems such as particle degradation can arise: proposed particles can be incompatible with the data, lying in low probability regions or outside the boundary constraints, and the discrete system could result in all particles having weights of zero. In this paper we introduce the Lifebelt Particle Filter (LBPF), a novel method for robust likelihood estimation in low-valued count problems. The LBPF combines a standard particle filter with one (or more) lifebelt particles which, by construction, lie within the boundaries of the discrete random variables, and therefore are compatible with the data. A mixture of resampled and non-resampled particles allows for the preservation of the lifebelt particle, which, together with the remaining particle swarm, provides samples from the filtering distribution, and can be used to generate unbiased estimates of the likelihood. The main benefit of the LBPF is that only one or few, wisely chosen, particles are sufficient to prevent particle collapse. Differently from other methods, there is no need to increase the number of particles, and therefore the computational effort, in regions of the parameter space that generate less likely hidden states. The LBPF can be used within a pseudo-marginal scheme to draw inferences on static parameters, $ \boldsymbolθ $, governing the system. We address here the estimation of a parameter governing probabilities of deaths and recoveries of hospitalised patients during an epidemic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源