论文标题
物理受限的深度学习温度和湿度的后处理
Physics-constrained deep learning postprocessing of temperature and humidity
论文作者
论文摘要
天气预报中心目前依靠统计后处理方法来最大程度地减少预测错误。这种提高了技能,但可能会导致预测变量之间的物理原理或无视依赖关系,这对于下游应用程序和后处理模型的可信度可能是有问题的,尤其是当它们基于新的机器学习方法时。在物理知识的机器学习的最新进展的基础上,我们建议通过以分析方程式将气象专业知识整合到基于深度学习的后处理模型中。应用于瑞士的地表天气后处理后,我们发现限制神经网络来强制执行热力学状态方程会产生体温和湿度的物理上一致的预测,而不会损害性能。当数据稀缺时,我们的方法尤其有利,我们的发现表明,将域专业知识纳入后处理模型中可以优化天气预测信息,同时满足特定于应用程序的要求。
Weather forecasting centers currently rely on statistical postprocessing methods to minimize forecast error. This improves skill but can lead to predictions that violate physical principles or disregard dependencies between variables, which can be problematic for downstream applications and for the trustworthiness of postprocessing models, especially when they are based on new machine learning approaches. Building on recent advances in physics-informed machine learning, we propose to achieve physical consistency in deep learning-based postprocessing models by integrating meteorological expertise in the form of analytic equations. Applied to the post-processing of surface weather in Switzerland, we find that constraining a neural network to enforce thermodynamic state equations yields physically-consistent predictions of temperature and humidity without compromising performance. Our approach is especially advantageous when data is scarce, and our findings suggest that incorporating domain expertise into postprocessing models allows to optimize weather forecast information while satisfying application-specific requirements.