论文标题

基于仿真的推理管道,用于宇宙剪切,并进行千度调查

A simulation-based inference pipeline for cosmic shear with the Kilo-Degree Survey

论文作者

Lin, Kiyam, von Wietersheim-Kramsta, Maximilian, Joachimi, Benjamin, Feeney, Stephen

论文摘要

宇宙大规模结构数据推断的标准方法采用了摘要统计数据,这些统计数据与高斯可能性的分析模型进行了比较,并具有预计的协方差。为了克服有关标准方法固有的可能性形式和数据复杂性的理想化假设,我们研究了基于仿真的推理(SBI),该推理将可能性视为神经网络概括的概率密度参数。我们构建了模拟的,精确的高斯分布数据向量的套件,以进行最新的KILO-DEGREE调查(KIDS)弱重力透镜分析,并证明SBI恢复了略低于$ 10^4 $仿真的完整12维儿童后验分布。我们通过最初通过HyperCube覆盖参数空间来优化仿真策略,然后进行积极学习的其他点。我们的SBI实现中的数据压缩对于基准参数值和数据协方差的次优选择是可靠的。因此,SBI与快速模拟器一起是标准推断的竞争性且更具用途的替代品。

The standard approach to inference from cosmic large-scale structure data employs summary statistics that are compared to analytic models in a Gaussian likelihood with pre-computed covariance. To overcome the idealising assumptions about the form of the likelihood and the complexity of the data inherent to the standard approach, we investigate simulation-based inference (SBI), which learns the likelihood as a probability density parameterised by a neural network. We construct suites of simulated, exactly Gaussian-distributed data vectors for the most recent Kilo-Degree Survey (KiDS) weak gravitational lensing analysis and demonstrate that SBI recovers the full 12-dimensional KiDS posterior distribution with just under $10^4$ simulations. We optimise the simulation strategy by initially covering the parameter space by a hypercube, followed by batches of actively learnt additional points. The data compression in our SBI implementation is robust to suboptimal choices of fiducial parameter values and of data covariance. Together with a fast simulator, SBI is therefore a competitive and more versatile alternative to standard inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源