论文标题

在使用卷积神经网络监测二氧化碳隔离时,增强的预测精度和不确定性定量

Enhanced prediction accuracy with uncertainty quantification in monitoring CO2 sequestration using convolutional neural networks

论文作者

Liu, Yanhua, Zhang, Xitong, Tsvankin, Ilya, Lin, Youzuo

论文摘要

实时监视储层内部的变化对于二氧化碳注入和长期存储的成功至关重要。由于其计算效率,机器学习(ML)非常适合实时二氧化碳监测。但是,ML的大多数现有应用程序仅产生一个预测(即期望)的给定输入,如果与培训数据相对于测试数据有变化,则可能无法正确反映测试数据的分布。同时的分位数回归(SQR)方法可以通过弹球丢失估算神经网络的目标变量的整个条件分布。在这里,我们将此技术纳入地震反转,以进行二氧化碳监测。然后,从中位数周围的特定预测间隔通过像素来计算不确定性图。我们还通过对不确定性取得进一步提高预测准确性的不确定性来提出一种新型的数据提升方法。开发的方法是根据能源部和加利福尼亚州的二氧化碳捕获和隔离项目(CCS)创建的合成Kimberlina数据测试的。结果证明,提出的网络可以快速估算地下速度并通过足够的分辨率估算。此外,计算的不确定性量化了预测准确性。即使由于现场数据采集中的问题而导致测试数据扭曲,该方法仍然坚固。另一项测试证明了开发的数据启发方法在增加估计速度场的空间分辨率以及减少预测误差方面的有效性。

Monitoring changes inside a reservoir in real time is crucial for the success of CO2 injection and long-term storage. Machine learning (ML) is well-suited for real-time CO2 monitoring because of its computational efficiency. However, most existing applications of ML yield only one prediction (i.e., the expectation) for a given input, which may not properly reflect the distribution of the testing data, if it has a shift with respect to that of the training data. The Simultaneous Quantile Regression (SQR) method can estimate the entire conditional distribution of the target variable of a neural network via pinball loss. Here, we incorporate this technique into seismic inversion for purposes of CO2 monitoring. The uncertainty map is then calculated pixel by pixel from a particular prediction interval around the median. We also propose a novel data-augmentation method by sampling the uncertainty to further improve prediction accuracy. The developed methodology is tested on synthetic Kimberlina data, which are created by the Department of Energy and based on a CO2 capture and sequestration (CCS) project in California. The results prove that the proposed network can estimate the subsurface velocity rapidly and with sufficient resolution. Furthermore, the computed uncertainty quantifies the prediction accuracy. The method remains robust even if the testing data are distorted due to problems in the field data acquisition. Another test demonstrates the effectiveness of the developed data-augmentation method in increasing the spatial resolution of the estimated velocity field and in reducing the prediction error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源