论文标题
低资源命名实体识别的AUC最大化
AUC Maximization for Low-Resource Named Entity Recognition
论文作者
论文摘要
命名实体识别(NER)中的当前工作使用跨熵(CE)或条件随机字段(CRF)作为目标/损失函数,以优化基础NER模型。当数据分布平衡并且有足够的注释培训示例时,这两个传统的目标功能通常都会产生足够的性能。但是,由于NER本质上是一个不平衡的标记问题,因此低资源设置下的模型性能可能会使用这些标准目标函数遭受。基于ROC曲线(AUC)最大化下面积的最新进展,我们建议通过最大化AUC得分来优化NER模型。我们提供的证据表明,通过简单地结合两个二进制分类器,可以最大程度地提高AUC分数,在低资源的NER设置下,可以实现对传统损失功能的显着提高。我们还进行了广泛的实验,以证明在低资源和高度破坏的数据分布设置下我们方法的优势。据我们所知,这是将AUC最大化到NER设置的第一部作品。此外,我们表明我们的方法对不同类型的NER嵌入,模型和域不可知。将根据要求提供复制此工作的代码。
Current work in named entity recognition (NER) uses either cross entropy (CE) or conditional random fields (CRF) as the objective/loss functions to optimize the underlying NER model. Both of these traditional objective functions for the NER problem generally produce adequate performance when the data distribution is balanced and there are sufficient annotated training examples. But since NER is inherently an imbalanced tagging problem, the model performance under the low-resource settings could suffer using these standard objective functions. Based on recent advances in area under the ROC curve (AUC) maximization, we propose to optimize the NER model by maximizing the AUC score. We give evidence that by simply combining two binary-classifiers that maximize the AUC score, significant performance improvement over traditional loss functions is achieved under low-resource NER settings. We also conduct extensive experiments to demonstrate the advantages of our method under the low-resource and highly-imbalanced data distribution settings. To the best of our knowledge, this is the first work that brings AUC maximization to the NER setting. Furthermore, we show that our method is agnostic to different types of NER embeddings, models and domains. The code to replicate this work will be provided upon request.