论文标题
Berezin量化,保形焊接和Bott-Virasoro组
Berezin quantization, conformal welding and the Bott-Virasoro group
论文作者
论文摘要
在Nag-Sullivan之后,我们研究了圆圈$ {\ rm diff}^+(s^1)圆圈$ {\ rm diff}^+(s^1)$ diffemorphisms在Holomorthic函数的Hilbert空间上。共形焊接为相应的合成性转换提供了三角分解。我们将berezin形式主义应用于作用于Fock空间的操作员。该升力提供了保形焊接的量化,为Bott-Virasoso cocylce类提供了新的代表,并导致takhtajan-teo能量功能在$ {\ rm diff}^+(s^1)上具有令人惊讶的身份。
Following Nag-Sullivan, we study the representation of the group ${\rm Diff}^+(S^1)$ of diffeomorphisms of the circle on the Hilbert space of holomorphic functions. Conformal welding provides a triangular decompositions for the corresponding symplectic transformations. We apply Berezin formalism and lift this decomposition to operators acting on the Fock space. This lift provides quantization of conformal welding, gives a new representative of the Bott-Virasoso cocylce class, and leads to a surprising identity for the Takhtajan-Teo energy functional on ${\rm Diff}^+(S^1)$.