论文标题
通过dinaturality重新审视可决定的有限量化
Revisiting Decidable Bounded Quantification, via Dinaturality
论文作者
论文摘要
我们使用语义解释来研究定义具有有限量化的表达式但可决定性的系统的问题。由于不可确定的亚型关系,在广泛研究的系统中进行的Typechecking是无法确定的,罪魁祸首是亚型界定定量的规则。已经提出了该规则的较弱版本,允许可决定的亚型。最终的类型系统(内核FSUB)缺乏表达性,另一个(系统FSUBTOP)缺乏最小的打字属性,因此没有明显的类型算法。 我们将这些规则视为定义有限量化的不同形式,一种用于解释类型可变抽象,另一个用于类型实例化。通过使用类型实例化的dinaturation在包含方面的dinaturity对两者进行语义解释,我们表明它们可以在单一类型的系统中共存。这确实具有最小的打字属性,因此具有简单的打字过程。 我们将这种统一类型系统的片段视为仅包含一种有界量词的类型。其中一个等同于内核FSUB,而另一个可以严格键入的术语比System Fsubtop,但相同的beta差异术语集。我们显示了针对此片段的键入访问性的可决定性,因此对于beta正常术语的系统fsubtop打字。
We use a semantic interpretation to investigate the problem of defining an expressive but decidable type system with bounded quantification. Typechecking in the widely studied System Fsub is undecidable thanks to an undecidable subtyping relation, for which the culprit is the rule for subtyping bounded quantification. Weaker versions of this rule, allowing decidable subtyping, have been proposed. One of the resulting type systems (Kernel Fsub) lacks expressiveness, another (System Fsubtop) lacks the minimal typing property and thus has no evident typechecking algorithm. We consider these rules as defining distinct forms of bounded quantification, one for interpreting type variable abstraction, and the other for type instantiation. By giving a semantic interpretation for both in terms of unbounded quantification, using the dinaturality of type instantiation with respect to subsumption, we show that they can coexist within a single type system. This does have the minimal typing property and thus a simple typechecking procedure. We consider the fragments of this unified type system over types which contain only one form of bounded quantifier. One of these is equivalent to Kernel Fsub, while the other can type strictly more terms than System Fsubtop but the same set of beta-normal terms. We show decidability of typechecking for this fragment, and thus for System Fsubtop typechecking of beta-normal terms.