论文标题

双重强大的内核统计数据用于测试分布处理效果

Doubly Robust Kernel Statistics for Testing Distributional Treatment Effects

论文作者

Fawkes, Jake, Hu, Robert, Evans, Robin J., Sejdinovic, Dino

论文摘要

随着因果推断的广泛应用,拥有可以在各种情况下测试因果效应的工具变得越来越重要。在这种情况下,我们着重于\ emph {分布}因果效应的测试问题,其中治疗不仅影响平均值,而且影响分布的高阶力矩,以及多维或结构化结果。我们建立在先前引入的框架,反事实均值嵌入的基础上,用于代表复制内核希尔伯特空间(RKHS)中的因果分布,提出了新的,改进的,改进的分布嵌入估计量。这些改进的估计器的灵感来自于因果平均值的双重稳健估计器,并使用内核空间内的类似形式的估计量。我们分析了这些估计量,证明它们保留了双重稳健的属性,并且与原始估计量相比,收敛速率提高了。使用我们提出的作为测试统计数据的估计值,这导致了针对分布因果效应的新置换测试。我们在实验和理论上证明了测试的有效性。

With the widespread application of causal inference, it is increasingly important to have tools which can test for the presence of causal effects in a diverse array of circumstances. In this vein we focus on the problem of testing for \emph{distributional} causal effects, where the treatment affects not just the mean, but also higher order moments of the distribution, as well as multidimensional or structured outcomes. We build upon a previously introduced framework, Counterfactual Mean Embeddings, for representing causal distributions within Reproducing Kernel Hilbert Spaces (RKHS) by proposing new, improved, estimators for the distributional embeddings. These improved estimators are inspired by doubly robust estimators of the causal mean, using a similar form within the kernel space. We analyse these estimators, proving they retain the doubly robust property and have improved convergence rates compared to the original estimators. This leads to new permutation based tests for distributional causal effects, using the estimators we propose as tests statistics. We experimentally and theoretically demonstrate the validity of our tests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源