论文标题

分隔函数和正交状态的探索和探索的符号猜想

Symplectic conjectures for sums of divisor functions and explorations of an orthogonal regime

论文作者

Kuperberg, Vivian, Lalín, Matilde

论文摘要

在[arxiv:2107.01437]中,作者研究了函数字段上的某些总和$ d_k(f)$的均值Roditty-Gershon和Rudnick [Arxiv:1504.07804]用于单一矩阵。我们提出了一个类似的问题,该问题在正交矩阵的集合上产生了不可或缺的问题,并对符号和正交矩阵积分进行了更详细的研究,将它们与对称函数理论有关。功能字段结果导致有关数字字段上类似问题的猜想。

In [arXiv:2107.01437], the authors studied the mean-square of certain sums of the divisor function $d_k(f)$ over the function field $\mathbb{F}_q[T]$ in the limit as $q \to \infty$ and related these sums to integrals over the ensemble of symplectic matrices, along similar lines as previous work of Keating, Rodgers, Roditty-Gershon and Rudnick [arXiv:1504.07804] for unitary matrices. We present an analogous problem yielding an integral over the ensemble of orthogonal matrices and pursue a more detailed study of both the symplectic and orthogonal matrix integrals, relating them to symmetric function theory. The function field results lead to conjectures concerning analogous questions over number fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源