论文标题
融合能源科学应用的量子计算
Quantum Computing for Fusion Energy Science Applications
论文作者
论文摘要
这是对Fusion Energy科学应用的最新研究和延长当今量子计算功能的评论。我们从简短的教程开始,介绍了理想和开放量子动力学,通用量子计算和量子算法。然后,我们探讨了使用量子计算机更详细地模拟线性和非线性动力学的主题。由于量子计算机只能在量子状态下有效执行线性操作,因此执行一般需要描述非线性微分方程的非线性操作是具有挑战性的。在这项工作中,我们通过明确推导Koopman Evolution Operator,Perron-Frobenius Evolution Operator和Koopman-Von Neumann Evolution(KVN)操作员之间的连接来扩展对线性系统中的非线性系统的先前结果。我们还明确地得出了Koopman和Carleman方法之间的联系。将KVN框架扩展到与Carleman嵌入相关的复杂分析环境,并证明了附录中涵盖了Hilbert Space度量标准的选择的复杂分析重现Hilbert空间的不同选择取决于Hilbert Space Metric的选择。最后,我们在当今的量子硬件平台上对算法的最新量子硬件实现进行了综述,这些算法可以通过哈密顿模拟来加速一天。我们通过模拟量子图和在非线性血浆动力学中重要的波浪相互作用的模拟来讨论波粒相互作用的玩具模型。
This is a review of recent research exploring and extending present-day quantum computing capabilities for fusion energy science applications. We begin with a brief tutorial on both ideal and open quantum dynamics, universal quantum computation, and quantum algorithms. Then, we explore the topic of using quantum computers to simulate both linear and nonlinear dynamics in greater detail. Because quantum computers can only efficiently perform linear operations on the quantum state, it is challenging to perform nonlinear operations that are generically required to describe the nonlinear differential equations of interest. In this work, we extend previous results on embedding nonlinear systems within linear systems by explicitly deriving the connection between the Koopman evolution operator, the Perron-Frobenius evolution operator, and the Koopman-von Neumann evolution (KvN) operator. We also explicitly derive the connection between the Koopman and Carleman approaches to embedding. Extension of the KvN framework to the complex-analytic setting relevant to Carleman embedding, and the proof that different choices of complex analytic reproducing kernel Hilbert spaces depend on the choice of Hilbert space metric are covered in the appendices. Finally, we conclude with a review of recent quantum hardware implementations of algorithms on present-day quantum hardware platforms that may one day be accelerated through Hamiltonian simulation. We discuss the simulation of toy models of wave-particle interactions through the simulation of quantum maps and of wave-wave interactions important in nonlinear plasma dynamics.