论文标题

r^d中最大邻居框数的新界限

New bounds on the maximum number of neighborly boxes in R^d

论文作者

Alon, Noga, Grytczuk, Jarosław, Kisielewicz, Andrzej P., Przesławski, Krzysztof

论文摘要

如果其中两个的相交的尺寸至少至少$ d-k $,最多只有$ d-1 $,则$ \ er^d $中的轴对准盒子是\ er^d $ is \ emph {$ k $ -neighborly}。令$ n(k,d)$表示这样一个家庭的最大规模。众所周知,$ n(k,d)$可以等效地定义为完整图中的最大顶点数量,其边缘可以由$ d $完整的两部分图覆盖,每个边缘最多覆盖为$ k $ times。 我们在$ n(k,d)$上得出了一种新的上限,特别是暗示$ n(k,d)\ leqslant(2-δ)^d $如果$ k \ leqslant(1- \ varepsilon)d $,其中$ uexuduectiony $δ> 0 $取决于任意选择的$ \ VAREPSILON $ \ VAREPSILON> 0 $ 0 $ 0。该证明应用了Kleitman的经典结果,涉及离散高管中给定直径的最大集合大小。通过明确的结构,我们还获得了$ n(k,d)$的新下限,这意味着$ n(k,d)\ geqslant(1-o(1))\ frac {d^k} {k!} $。我们还研究了$ k $ - 尼加利利的盒子家族,并具有其他结构性特性。以树状的方式分裂的家庭称为\ emph {total laminations},对于显式结构特别有用。我们根据这些结构和一些计算实验提出了一些猜想。

A family of axis-aligned boxes in $\er^d$ is \emph{$k$-neighborly} if the intersection of every two of them has dimension at least $d-k$ and at most $d-1$. Let $n(k,d)$ denote the maximum size of such a family. It is known that $n(k,d)$ can be equivalently defined as the maximum number of vertices in a complete graph whose edges can be covered by $d$ complete bipartite graphs, with each edge covered at most $k$ times. We derive a new upper bound on $n(k,d)$, which implies, in particular, that $n(k,d)\leqslant (2-δ)^d$ if $k\leqslant (1-\varepsilon)d$, where $δ>0$ depends on arbitrarily chosen $\varepsilon>0$. The proof applies a classical result of Kleitman, concerning the maximum size of sets with a given diameter in discrete hypercubes. By an explicit construction we obtain also a new lower bound for $n(k,d)$, which implies that $n(k,d)\geqslant (1-o(1))\frac{d^k}{k!}$. We also study $k$-neighborly families of boxes with additional structural properties. Families called \emph{total laminations}, that split in a tree-like fashion, turn out to be particularly useful for explicit constructions. We pose a few conjectures based on these constructions and some computational experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源