论文标题
用于数据挖掘的神经匪徒:寻找危险的多药
Neural Bandits for Data Mining: Searching for Dangerous Polypharmacy
论文作者
论文摘要
在老年人群中,多剂量通常被定义为同时消耗五种或多种药物,这是一种普遍的现象。这些多药品中的一些被认为是不合适的,可能与不良健康结果(例如死亡或住院)有关。考虑到问题的组合性质以及索赔数据库的规模以及计算给定药物组合的确切关联度量的成本,因此无法调查所有可能的药物组合。因此,我们建议优化对潜在不适当的多药(PIP)的搜索。为此,我们提出了基于神经汤普森采样和差异进化的Optimneurts策略,以有效地挖掘索赔数据集,并建立一个预测性模型,以预测药物组合和健康结果之间的关联。我们使用由内部开发的多药数据模拟器生成的两个数据集对我们的方法进行基准测试,该数据集包含500种药物和100 000种不同的组合。从经验上讲,我们的方法最多可以检测到72%的PIP,同时使用30 000个时间步骤保持99%的平均精度得分。
Polypharmacy, most often defined as the simultaneous consumption of five or more drugs at once, is a prevalent phenomenon in the older population. Some of these polypharmacies, deemed inappropriate, may be associated with adverse health outcomes such as death or hospitalization. Considering the combinatorial nature of the problem as well as the size of claims database and the cost to compute an exact association measure for a given drug combination, it is impossible to investigate every possible combination of drugs. Therefore, we propose to optimize the search for potentially inappropriate polypharmacies (PIPs). To this end, we propose the OptimNeuralTS strategy, based on Neural Thompson Sampling and differential evolution, to efficiently mine claims datasets and build a predictive model of the association between drug combinations and health outcomes. We benchmark our method using two datasets generated by an internally developed simulator of polypharmacy data containing 500 drugs and 100 000 distinct combinations. Empirically, our method can detect up to 72% of PIPs while maintaining an average precision score of 99% using 30 000 time steps.